Search

Search Results (329742 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-24620 2 Pluginops, Wordpress 2 Landing Page Builder, Wordpress 2026-01-26 N/A
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in PluginOps Landing Page Builder page-builder-add allows Stored XSS.This issue affects Landing Page Builder: from n/a through <= 1.5.3.3.
CVE-2026-24422 1 Thorsten 1 Phpmyfaq 2026-01-26 5.3 Medium
phpMyFAQ is an open source FAQ web application. In versions 4.0.16 and below, multiple public API endpoints improperly expose sensitive user information due to insufficient access controls. The OpenQuestionController::list() endpoint calls Question::getAll() with showAll=true by default, returning records marked as non-public (isVisible=false) along with user email addresses, with similar exposures present in comment, news, and FAQ APIs. This information disclosure vulnerability could enable attackers to harvest email addresses for phishing campaigns or access content that was explicitly marked as private. This issue has been fixed in version 4.0.17.
CVE-2026-24420 1 Thorsten 1 Phpmyfaq 2026-01-26 6.5 Medium
phpMyFAQ is an open source FAQ web application. Versions 4.0.16 and below allow an authenticated user without the dlattachment permission to download FAQ attachments due to a incomprehensive permissions check. The presence of a right key is improperly validated as proof of authorization in attachment.php. Additionally, the group and user permission logic contains a flawed conditional expression that may allow unauthorized access. This issue has been fixed in version
CVE-2026-1422 2026-01-26 7.3 High
A vulnerability was found in code-projects Online Examination System 1.0. Affected by this vulnerability is an unknown functionality of the file /index.php of the component Login Page. Performing a manipulation of the argument User results in sql injection. The attack is possible to be carried out remotely. The exploit has been made public and could be used.
CVE-2025-59105 2026-01-26 N/A
With physical access to the device and enough time an attacker can desolder the flash memory, modify it and then reinstall it because of missing encryption. Thus, essential files, such as "/etc/passwd", as well as stored certificates, cryptographic keys, stored PINs and so on can be modified and read, in order to gain SSH root access on the Linux-based K7 model. On the Windows CE based K5 model, the password for the Access Manager can additionally be read in plain text from the stored SQLite database.
CVE-2026-23013 1 Linux 1 Linux Kernel 2026-01-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: octeon_ep_vf: fix free_irq dev_id mismatch in IRQ rollback octep_vf_request_irqs() requests MSI-X queue IRQs with dev_id set to ioq_vector. If request_irq() fails part-way, the rollback loop calls free_irq() with dev_id set to 'oct', which does not match the original dev_id and may leave the irqaction registered. This can keep IRQ handlers alive while ioq_vector is later freed during unwind/teardown, leading to a use-after-free or crash when an interrupt fires. Fix the error path to free IRQs with the same ioq_vector dev_id used during request_irq().
CVE-2026-23012 1 Linux 1 Linux Kernel 2026-01-26 N/A
In the Linux kernel, the following vulnerability has been resolved: mm/damon/core: remove call_control in inactive contexts If damon_call() is executed against a DAMON context that is not running, the function returns error while keeping the damon_call_control object linked to the context's call_controls list. Let's suppose the object is deallocated after the damon_call(), and yet another damon_call() is executed against the same context. The function tries to add the new damon_call_control object to the call_controls list, which still has the pointer to the previous damon_call_control object, which is deallocated. As a result, use-after-free happens. This can actually be triggered using the DAMON sysfs interface. It is not easily exploitable since it requires the sysfs write permission and making a definitely weird file writes, though. Please refer to the report for more details about the issue reproduction steps. Fix the issue by making two changes. Firstly, move the final kdamond_call() for cancelling all existing damon_call() requests from terminating DAMON context to be done before the ctx->kdamond reset. This makes any code that sees NULL ctx->kdamond can safely assume the context may not access damon_call() requests anymore. Secondly, let damon_call() to cleanup the damon_call_control objects that were added to the already-terminated DAMON context, before returning the error.
CVE-2026-23011 1 Linux 1 Linux Kernel 2026-01-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv4: ip_gre: make ipgre_header() robust Analog to commit db5b4e39c4e6 ("ip6_gre: make ip6gre_header() robust") Over the years, syzbot found many ways to crash the kernel in ipgre_header() [1]. This involves team or bonding drivers ability to dynamically change their dev->needed_headroom and/or dev->hard_header_len In this particular crash mld_newpack() allocated an skb with a too small reserve/headroom, and by the time mld_sendpack() was called, syzbot managed to attach an ipgre device. [1] skbuff: skb_under_panic: text:ffffffff89ea3cb7 len:2030915468 put:2030915372 head:ffff888058b43000 data:ffff887fdfa6e194 tail:0x120 end:0x6c0 dev:team0 kernel BUG at net/core/skbuff.c:213 ! Oops: invalid opcode: 0000 [#1] SMP KASAN PTI CPU: 1 UID: 0 PID: 1322 Comm: kworker/1:9 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 Workqueue: mld mld_ifc_work RIP: 0010:skb_panic+0x157/0x160 net/core/skbuff.c:213 Call Trace: <TASK> skb_under_panic net/core/skbuff.c:223 [inline] skb_push+0xc3/0xe0 net/core/skbuff.c:2641 ipgre_header+0x67/0x290 net/ipv4/ip_gre.c:897 dev_hard_header include/linux/netdevice.h:3436 [inline] neigh_connected_output+0x286/0x460 net/core/neighbour.c:1618 NF_HOOK_COND include/linux/netfilter.h:307 [inline] ip6_output+0x340/0x550 net/ipv6/ip6_output.c:247 NF_HOOK+0x9e/0x380 include/linux/netfilter.h:318 mld_sendpack+0x8d4/0xe60 net/ipv6/mcast.c:1855 mld_send_cr net/ipv6/mcast.c:2154 [inline] mld_ifc_work+0x83e/0xd60 net/ipv6/mcast.c:2693 process_one_work kernel/workqueue.c:3257 [inline] process_scheduled_works+0xad1/0x1770 kernel/workqueue.c:3340 worker_thread+0x8a0/0xda0 kernel/workqueue.c:3421 kthread+0x711/0x8a0 kernel/kthread.c:463 ret_from_fork+0x510/0xa50 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246
CVE-2026-23010 1 Linux 1 Linux Kernel 2026-01-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix use-after-free in inet6_addr_del(). syzbot reported use-after-free of inet6_ifaddr in inet6_addr_del(). [0] The cited commit accidentally moved ipv6_del_addr() for mngtmpaddr before reading its ifp->flags for temporary addresses in inet6_addr_del(). Let's move ipv6_del_addr() down to fix the UAF. [0]: BUG: KASAN: slab-use-after-free in inet6_addr_del.constprop.0+0x67a/0x6b0 net/ipv6/addrconf.c:3117 Read of size 4 at addr ffff88807b89c86c by task syz.3.1618/9593 CPU: 0 UID: 0 PID: 9593 Comm: syz.3.1618 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xcd/0x630 mm/kasan/report.c:482 kasan_report+0xe0/0x110 mm/kasan/report.c:595 inet6_addr_del.constprop.0+0x67a/0x6b0 net/ipv6/addrconf.c:3117 addrconf_del_ifaddr+0x11e/0x190 net/ipv6/addrconf.c:3181 inet6_ioctl+0x1e5/0x2b0 net/ipv6/af_inet6.c:582 sock_do_ioctl+0x118/0x280 net/socket.c:1254 sock_ioctl+0x227/0x6b0 net/socket.c:1375 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl fs/ioctl.c:583 [inline] __x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f164cf8f749 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f164de64038 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007f164d1e5fa0 RCX: 00007f164cf8f749 RDX: 0000200000000000 RSI: 0000000000008936 RDI: 0000000000000003 RBP: 00007f164d013f91 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 00007f164d1e6038 R14: 00007f164d1e5fa0 R15: 00007ffde15c8288 </TASK> Allocated by task 9593: kasan_save_stack+0x33/0x60 mm/kasan/common.c:56 kasan_save_track+0x14/0x30 mm/kasan/common.c:77 poison_kmalloc_redzone mm/kasan/common.c:397 [inline] __kasan_kmalloc+0xaa/0xb0 mm/kasan/common.c:414 kmalloc_noprof include/linux/slab.h:957 [inline] kzalloc_noprof include/linux/slab.h:1094 [inline] ipv6_add_addr+0x4e3/0x2010 net/ipv6/addrconf.c:1120 inet6_addr_add+0x256/0x9b0 net/ipv6/addrconf.c:3050 addrconf_add_ifaddr+0x1fc/0x450 net/ipv6/addrconf.c:3160 inet6_ioctl+0x103/0x2b0 net/ipv6/af_inet6.c:580 sock_do_ioctl+0x118/0x280 net/socket.c:1254 sock_ioctl+0x227/0x6b0 net/socket.c:1375 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl fs/ioctl.c:583 [inline] __x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 6099: kasan_save_stack+0x33/0x60 mm/kasan/common.c:56 kasan_save_track+0x14/0x30 mm/kasan/common.c:77 kasan_save_free_info+0x3b/0x60 mm/kasan/generic.c:584 poison_slab_object mm/kasan/common.c:252 [inline] __kasan_slab_free+0x5f/0x80 mm/kasan/common.c:284 kasan_slab_free include/linux/kasan.h:234 [inline] slab_free_hook mm/slub.c:2540 [inline] slab_free_freelist_hook mm/slub.c:2569 [inline] slab_free_bulk mm/slub.c:6696 [inline] kmem_cache_free_bulk mm/slub.c:7383 [inline] kmem_cache_free_bulk+0x2bf/0x680 mm/slub.c:7362 kfree_bulk include/linux/slab.h:830 [inline] kvfree_rcu_bulk+0x1b7/0x1e0 mm/slab_common.c:1523 kvfree_rcu_drain_ready mm/slab_common.c:1728 [inline] kfree_rcu_monitor+0x1d0/0x2f0 mm/slab_common.c:1801 process_one_work+0x9ba/0x1b20 kernel/workqueue.c:3257 process_scheduled_works kernel/workqu ---truncated---
CVE-2026-23009 1 Linux 1 Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: xhci: sideband: don't dereference freed ring when removing sideband endpoint xhci_sideband_remove_endpoint() incorrecly assumes that the endpoint is running and has a valid transfer ring. Lianqin reported a crash during suspend/wake-up stress testing, and found the cause to be dereferencing a non-existing transfer ring 'ep->ring' during xhci_sideband_remove_endpoint(). The endpoint and its ring may be in unknown state if this function is called after xHCI was reinitialized in resume (lost power), or if device is being re-enumerated, disconnected or endpoint already dropped. Fix this by both removing unnecessary ring access, and by checking ep->ring exists before dereferencing it. Also make sure endpoint is running before attempting to stop it. Remove the xhci_initialize_ring_info() call during sideband endpoint removal as is it only initializes ring structure enqueue, dequeue and cycle state values to their starting values without changing actual hardware enqueue, dequeue and cycle state. Leaving them out of sync is worse than leaving it as it is. The endpoint will get freed in after this in most usecases. If the (audio) class driver want's to reuse the endpoint after offload then it is up to the class driver to ensure endpoint is properly set up.
CVE-2026-23007 1 Linux 1 Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: zero non-PI portion of auto integrity buffer The auto-generated integrity buffer for writes needs to be fully initialized before being passed to the underlying block device, otherwise the uninitialized memory can be read back by userspace or anyone with physical access to the storage device. If protection information is generated, that portion of the integrity buffer is already initialized. The integrity data is also zeroed if PI generation is disabled via sysfs or the PI tuple size is 0. However, this misses the case where PI is generated and the PI tuple size is nonzero, but the metadata size is larger than the PI tuple. In this case, the remainder ("opaque") of the metadata is left uninitialized. Generalize the BLK_INTEGRITY_CSUM_NONE check to cover any case when the metadata is larger than just the PI tuple.
CVE-2026-23005 1 Linux 1 Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Clear XSTATE_BV[i] in guest XSAVE state whenever XFD[i]=1 When loading guest XSAVE state via KVM_SET_XSAVE, and when updating XFD in response to a guest WRMSR, clear XFD-disabled features in the saved (or to be restored) XSTATE_BV to ensure KVM doesn't attempt to load state for features that are disabled via the guest's XFD. Because the kernel executes XRSTOR with the guest's XFD, saving XSTATE_BV[i]=1 with XFD[i]=1 will cause XRSTOR to #NM and panic the kernel. E.g. if fpu_update_guest_xfd() sets XFD without clearing XSTATE_BV: ------------[ cut here ]------------ WARNING: arch/x86/kernel/traps.c:1524 at exc_device_not_available+0x101/0x110, CPU#29: amx_test/848 Modules linked in: kvm_intel kvm irqbypass CPU: 29 UID: 1000 PID: 848 Comm: amx_test Not tainted 6.19.0-rc2-ffa07f7fd437-x86_amx_nm_xfd_non_init-vm #171 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:exc_device_not_available+0x101/0x110 Call Trace: <TASK> asm_exc_device_not_available+0x1a/0x20 RIP: 0010:restore_fpregs_from_fpstate+0x36/0x90 switch_fpu_return+0x4a/0xb0 kvm_arch_vcpu_ioctl_run+0x1245/0x1e40 [kvm] kvm_vcpu_ioctl+0x2c3/0x8f0 [kvm] __x64_sys_ioctl+0x8f/0xd0 do_syscall_64+0x62/0x940 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK> ---[ end trace 0000000000000000 ]--- This can happen if the guest executes WRMSR(MSR_IA32_XFD) to set XFD[18] = 1, and a host IRQ triggers kernel_fpu_begin() prior to the vmexit handler's call to fpu_update_guest_xfd(). and if userspace stuffs XSTATE_BV[i]=1 via KVM_SET_XSAVE: ------------[ cut here ]------------ WARNING: arch/x86/kernel/traps.c:1524 at exc_device_not_available+0x101/0x110, CPU#14: amx_test/867 Modules linked in: kvm_intel kvm irqbypass CPU: 14 UID: 1000 PID: 867 Comm: amx_test Not tainted 6.19.0-rc2-2dace9faccd6-x86_amx_nm_xfd_non_init-vm #168 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:exc_device_not_available+0x101/0x110 Call Trace: <TASK> asm_exc_device_not_available+0x1a/0x20 RIP: 0010:restore_fpregs_from_fpstate+0x36/0x90 fpu_swap_kvm_fpstate+0x6b/0x120 kvm_load_guest_fpu+0x30/0x80 [kvm] kvm_arch_vcpu_ioctl_run+0x85/0x1e40 [kvm] kvm_vcpu_ioctl+0x2c3/0x8f0 [kvm] __x64_sys_ioctl+0x8f/0xd0 do_syscall_64+0x62/0x940 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK> ---[ end trace 0000000000000000 ]--- The new behavior is consistent with the AMX architecture. Per Intel's SDM, XSAVE saves XSTATE_BV as '0' for components that are disabled via XFD (and non-compacted XSAVE saves the initial configuration of the state component): If XSAVE, XSAVEC, XSAVEOPT, or XSAVES is saving the state component i, the instruction does not generate #NM when XCR0[i] = IA32_XFD[i] = 1; instead, it operates as if XINUSE[i] = 0 (and the state component was in its initial state): it saves bit i of XSTATE_BV field of the XSAVE header as 0; in addition, XSAVE saves the initial configuration of the state component (the other instructions do not save state component i). Alternatively, KVM could always do XRSTOR with XFD=0, e.g. by using a constant XFD based on the set of enabled features when XSAVEing for a struct fpu_guest. However, having XSTATE_BV[i]=1 for XFD-disabled features can only happen in the above interrupt case, or in similar scenarios involving preemption on preemptible kernels, because fpu_swap_kvm_fpstate()'s call to save_fpregs_to_fpstate() saves the outgoing FPU state with the current XFD; and that is (on all but the first WRMSR to XFD) the guest XFD. Therefore, XFD can only go out of sync with XSTATE_BV in the above interrupt case, or in similar scenarios involving preemption on preemptible kernels, and it we can consider it (de facto) part of KVM ABI that KVM_GET_XSAVE returns XSTATE_BV[i]=0 for XFD-disabled features. [Move clea ---truncated---
CVE-2026-23003 1 Linux 1 Linux Kernel 2026-01-26 N/A
In the Linux kernel, the following vulnerability has been resolved: ip6_tunnel: use skb_vlan_inet_prepare() in __ip6_tnl_rcv() Blamed commit did not take care of VLAN encapsulations as spotted by syzbot [1]. Use skb_vlan_inet_prepare() instead of pskb_inet_may_pull(). [1] BUG: KMSAN: uninit-value in __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] BUG: KMSAN: uninit-value in INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] BUG: KMSAN: uninit-value in IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321 __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321 ip6ip6_dscp_ecn_decapsulate+0x16f/0x1b0 net/ipv6/ip6_tunnel.c:729 __ip6_tnl_rcv+0xed9/0x1b50 net/ipv6/ip6_tunnel.c:860 ip6_tnl_rcv+0xc3/0x100 net/ipv6/ip6_tunnel.c:903 gre_rcv+0x1529/0x1b90 net/ipv6/ip6_gre.c:-1 ip6_protocol_deliver_rcu+0x1c89/0x2c60 net/ipv6/ip6_input.c:438 ip6_input_finish+0x1f4/0x4a0 net/ipv6/ip6_input.c:489 NF_HOOK include/linux/netfilter.h:318 [inline] ip6_input+0x9c/0x330 net/ipv6/ip6_input.c:500 ip6_mc_input+0x7ca/0xc10 net/ipv6/ip6_input.c:590 dst_input include/net/dst.h:474 [inline] ip6_rcv_finish+0x958/0x990 net/ipv6/ip6_input.c:79 NF_HOOK include/linux/netfilter.h:318 [inline] ipv6_rcv+0xf1/0x3c0 net/ipv6/ip6_input.c:311 __netif_receive_skb_one_core net/core/dev.c:6139 [inline] __netif_receive_skb+0x1df/0xac0 net/core/dev.c:6252 netif_receive_skb_internal net/core/dev.c:6338 [inline] netif_receive_skb+0x57/0x630 net/core/dev.c:6397 tun_rx_batched+0x1df/0x980 drivers/net/tun.c:1485 tun_get_user+0x5c0e/0x6c60 drivers/net/tun.c:1953 tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999 new_sync_write fs/read_write.c:593 [inline] vfs_write+0xbe2/0x15d0 fs/read_write.c:686 ksys_write fs/read_write.c:738 [inline] __do_sys_write fs/read_write.c:749 [inline] __se_sys_write fs/read_write.c:746 [inline] __x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746 x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was created at: slab_post_alloc_hook mm/slub.c:4960 [inline] slab_alloc_node mm/slub.c:5263 [inline] kmem_cache_alloc_node_noprof+0x9e7/0x17a0 mm/slub.c:5315 kmalloc_reserve+0x13c/0x4b0 net/core/skbuff.c:586 __alloc_skb+0x805/0x1040 net/core/skbuff.c:690 alloc_skb include/linux/skbuff.h:1383 [inline] alloc_skb_with_frags+0xc5/0xa60 net/core/skbuff.c:6712 sock_alloc_send_pskb+0xacc/0xc60 net/core/sock.c:2995 tun_alloc_skb drivers/net/tun.c:1461 [inline] tun_get_user+0x1142/0x6c60 drivers/net/tun.c:1794 tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999 new_sync_write fs/read_write.c:593 [inline] vfs_write+0xbe2/0x15d0 fs/read_write.c:686 ksys_write fs/read_write.c:738 [inline] __do_sys_write fs/read_write.c:749 [inline] __se_sys_write fs/read_write.c:746 [inline] __x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746 x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f CPU: 0 UID: 0 PID: 6465 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(none) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
CVE-2026-23002 1 Linux 1 Linux Kernel 2026-01-26 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: lib/buildid: use __kernel_read() for sleepable context Prevent a "BUG: unable to handle kernel NULL pointer dereference in filemap_read_folio". For the sleepable context, convert freader to use __kernel_read() instead of direct page cache access via read_cache_folio(). This simplifies the faultable code path by using the standard kernel file reading interface which handles all the complexity of reading file data. At the moment we are not changing the code for non-sleepable context which uses filemap_get_folio() and only succeeds if the target folios are already in memory and up-to-date. The reason is to keep the patch simple and easier to backport to stable kernels. Syzbot repro does not crash the kernel anymore and the selftests run successfully. In the follow up we will make __kernel_read() with IOCB_NOWAIT work for non-sleepable contexts. In addition, I would like to replace the secretmem check with a more generic approach and will add fstest for the buildid code.
CVE-2026-22999 1 Linux 1 Linux Kernel 2026-01-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_qfq: do not free existing class in qfq_change_class() Fixes qfq_change_class() error case. cl->qdisc and cl should only be freed if a new class and qdisc were allocated, or we risk various UAF.
CVE-2026-22998 1 Linux 1 Linux Kernel 2026-01-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: nvme-tcp: fix NULL pointer dereferences in nvmet_tcp_build_pdu_iovec Commit efa56305908b ("nvmet-tcp: Fix a kernel panic when host sends an invalid H2C PDU length") added ttag bounds checking and data_offset validation in nvmet_tcp_handle_h2c_data_pdu(), but it did not validate whether the command's data structures (cmd->req.sg and cmd->iov) have been properly initialized before processing H2C_DATA PDUs. The nvmet_tcp_build_pdu_iovec() function dereferences these pointers without NULL checks. This can be triggered by sending H2C_DATA PDU immediately after the ICREQ/ICRESP handshake, before sending a CONNECT command or NVMe write command. Attack vectors that trigger NULL pointer dereferences: 1. H2C_DATA PDU sent before CONNECT → both pointers NULL 2. H2C_DATA PDU for READ command → cmd->req.sg allocated, cmd->iov NULL 3. H2C_DATA PDU for uninitialized command slot → both pointers NULL The fix validates both cmd->req.sg and cmd->iov before calling nvmet_tcp_build_pdu_iovec(). Both checks are required because: - Uninitialized commands: both NULL - READ commands: cmd->req.sg allocated, cmd->iov NULL - WRITE commands: both allocated
CVE-2026-22997 1 Linux 1 Linux Kernel 2026-01-26 N/A
In the Linux kernel, the following vulnerability has been resolved: net: can: j1939: j1939_xtp_rx_rts_session_active(): deactivate session upon receiving the second rts Since j1939_session_deactivate_activate_next() in j1939_tp_rxtimer() is called only when the timer is enabled, we need to call j1939_session_deactivate_activate_next() if we cancelled the timer. Otherwise, refcount for j1939_session leaks, which will later appear as | unregister_netdevice: waiting for vcan0 to become free. Usage count = 2. problem.
CVE-2026-22995 1 Linux 1 Linux Kernel 2026-01-26 N/A
In the Linux kernel, the following vulnerability has been resolved: ublk: fix use-after-free in ublk_partition_scan_work A race condition exists between the async partition scan work and device teardown that can lead to a use-after-free of ub->ub_disk: 1. ublk_ctrl_start_dev() schedules partition_scan_work after add_disk() 2. ublk_stop_dev() calls ublk_stop_dev_unlocked() which does: - del_gendisk(ub->ub_disk) - ublk_detach_disk() sets ub->ub_disk = NULL - put_disk() which may free the disk 3. The worker ublk_partition_scan_work() then dereferences ub->ub_disk leading to UAF Fix this by using ublk_get_disk()/ublk_put_disk() in the worker to hold a reference to the disk during the partition scan. The spinlock in ublk_get_disk() synchronizes with ublk_detach_disk() ensuring the worker either gets a valid reference or sees NULL and exits early. Also change flush_work() to cancel_work_sync() to avoid running the partition scan work unnecessarily when the disk is already detached.
CVE-2026-22993 1 Linux 1 Linux Kernel 2026-01-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: idpf: Fix RSS LUT NULL ptr issue after soft reset During soft reset, the RSS LUT is freed and not restored unless the interface is up. If an ethtool command that accesses the rss lut is attempted immediately after reset, it will result in NULL ptr dereference. Also, there is no need to reset the rss lut if the soft reset does not involve queue count change. After soft reset, set the RSS LUT to default values based on the updated queue count only if the reset was a result of a queue count change and the LUT was not configured by the user. In all other cases, don't touch the LUT. Steps to reproduce: ** Bring the interface down (if up) ifconfig eth1 down ** update the queue count (eg., 27->20) ethtool -L eth1 combined 20 ** display the RSS LUT ethtool -x eth1 [82375.558338] BUG: kernel NULL pointer dereference, address: 0000000000000000 [82375.558373] #PF: supervisor read access in kernel mode [82375.558391] #PF: error_code(0x0000) - not-present page [82375.558408] PGD 0 P4D 0 [82375.558421] Oops: Oops: 0000 [#1] SMP NOPTI <snip> [82375.558516] RIP: 0010:idpf_get_rxfh+0x108/0x150 [idpf] [82375.558786] Call Trace: [82375.558793] <TASK> [82375.558804] rss_prepare.isra.0+0x187/0x2a0 [82375.558827] rss_prepare_data+0x3a/0x50 [82375.558845] ethnl_default_doit+0x13d/0x3e0 [82375.558863] genl_family_rcv_msg_doit+0x11f/0x180 [82375.558886] genl_rcv_msg+0x1ad/0x2b0 [82375.558902] ? __pfx_ethnl_default_doit+0x10/0x10 [82375.558920] ? __pfx_genl_rcv_msg+0x10/0x10 [82375.558937] netlink_rcv_skb+0x58/0x100 [82375.558957] genl_rcv+0x2c/0x50 [82375.558971] netlink_unicast+0x289/0x3e0 [82375.558988] netlink_sendmsg+0x215/0x440 [82375.559005] __sys_sendto+0x234/0x240 [82375.559555] __x64_sys_sendto+0x28/0x30 [82375.560068] x64_sys_call+0x1909/0x1da0 [82375.560576] do_syscall_64+0x7a/0xfa0 [82375.561076] ? clear_bhb_loop+0x60/0xb0 [82375.561567] entry_SYSCALL_64_after_hwframe+0x76/0x7e <snip>
CVE-2026-22989 1 Linux 1 Linux Kernel 2026-01-26 7.0 High
In the Linux kernel, the following vulnerability has been resolved: nfsd: check that server is running in unlock_filesystem If we are trying to unlock the filesystem via an administrative interface and nfsd isn't running, it crashes the server. This happens currently because nfsd4_revoke_states() access state structures (eg., conf_id_hashtbl) that has been freed as a part of the server shutdown. [ 59.465072] Call trace: [ 59.465308] nfsd4_revoke_states+0x1b4/0x898 [nfsd] (P) [ 59.465830] write_unlock_fs+0x258/0x440 [nfsd] [ 59.466278] nfsctl_transaction_write+0xb0/0x120 [nfsd] [ 59.466780] vfs_write+0x1f0/0x938 [ 59.467088] ksys_write+0xfc/0x1f8 [ 59.467395] __arm64_sys_write+0x74/0xb8 [ 59.467746] invoke_syscall.constprop.0+0xdc/0x1e8 [ 59.468177] do_el0_svc+0x154/0x1d8 [ 59.468489] el0_svc+0x40/0xe0 [ 59.468767] el0t_64_sync_handler+0xa0/0xe8 [ 59.469138] el0t_64_sync+0x1ac/0x1b0 Ensure this can't happen by taking the nfsd_mutex and checking that the server is still up, and then holding the mutex across the call to nfsd4_revoke_states().