Search

Search Results (324292 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50770 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix memory leak in ocfs2_mount_volume() There is a memory leak reported by kmemleak: unreferenced object 0xffff88810cc65e60 (size 32): comm "mount.ocfs2", pid 23753, jiffies 4302528942 (age 34735.105s) hex dump (first 32 bytes): 10 00 00 00 00 00 00 00 00 01 01 01 01 01 01 01 ................ 01 01 01 01 01 01 01 01 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff8170f73d>] __kmalloc+0x4d/0x150 [<ffffffffa0ac3f51>] ocfs2_compute_replay_slots+0x121/0x330 [ocfs2] [<ffffffffa0b65165>] ocfs2_check_volume+0x485/0x900 [ocfs2] [<ffffffffa0b68129>] ocfs2_mount_volume.isra.0+0x1e9/0x650 [ocfs2] [<ffffffffa0b7160b>] ocfs2_fill_super+0xe0b/0x1740 [ocfs2] [<ffffffff818e1fe2>] mount_bdev+0x312/0x400 [<ffffffff819a086d>] legacy_get_tree+0xed/0x1d0 [<ffffffff818de82d>] vfs_get_tree+0x7d/0x230 [<ffffffff81957f92>] path_mount+0xd62/0x1760 [<ffffffff81958a5a>] do_mount+0xca/0xe0 [<ffffffff81958d3c>] __x64_sys_mount+0x12c/0x1a0 [<ffffffff82f26f15>] do_syscall_64+0x35/0x80 [<ffffffff8300006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 This call stack is related to two problems. Firstly, the ocfs2 super uses "replay_map" to trace online/offline slots, in order to recover offline slots during recovery and mount. But when ocfs2_truncate_log_init() returns an error in ocfs2_mount_volume(), the memory of "replay_map" will not be freed in error handling path. Secondly, the memory of "replay_map" will not be freed if d_make_root() returns an error in ocfs2_fill_super(). But the memory of "replay_map" will be freed normally when completing recovery and mount in ocfs2_complete_mount_recovery(). Fix the first problem by adding error handling path to free "replay_map" when ocfs2_truncate_log_init() fails. And fix the second problem by calling ocfs2_free_replay_slots(osb) in the error handling path "out_dismount". In addition, since ocfs2_free_replay_slots() is static, it is necessary to remove its static attribute and declare it in header file.
CVE-2022-50769 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: mmc: mxcmmc: fix return value check of mmc_add_host() mmc_add_host() may return error, if we ignore its return value, the memory that allocated in mmc_alloc_host() will be leaked and it will lead a kernel crash because of deleting not added device in the remove path. So fix this by checking the return value and goto error path which will call mmc_free_host().
CVE-2022-50768 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: scsi: smartpqi: Correct device removal for multi-actuator devices Correct device count for multi-actuator drives which can cause kernel panics.
CVE-2022-50767 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: fbdev: smscufx: Fix several use-after-free bugs Several types of UAFs can occur when physically removing a USB device. Adds ufx_ops_destroy() function to .fb_destroy of fb_ops, and in this function, there is kref_put() that finally calls ufx_free(). This fix prevents multiple UAFs.
CVE-2022-50766 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: btrfs: set generation before calling btrfs_clean_tree_block in btrfs_init_new_buffer syzbot is reporting uninit-value in btrfs_clean_tree_block() [1], for commit bc877d285ca3dba2 ("btrfs: Deduplicate extent_buffer init code") missed that btrfs_set_header_generation() in btrfs_init_new_buffer() must not be moved to after clean_tree_block() because clean_tree_block() is calling btrfs_header_generation() since commit 55c69072d6bd5be1 ("Btrfs: Fix extent_buffer usage when nodesize != leafsize"). Since memzero_extent_buffer() will reset "struct btrfs_header" part, we can't move btrfs_set_header_generation() to before memzero_extent_buffer(). Just re-add btrfs_set_header_generation() before btrfs_clean_tree_block().
CVE-2022-50765 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: RISC-V: kexec: Fix memory leak of elf header buffer This is reported by kmemleak detector: unreferenced object 0xff2000000403d000 (size 4096): comm "kexec", pid 146, jiffies 4294900633 (age 64.792s) hex dump (first 32 bytes): 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 .ELF............ 04 00 f3 00 01 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000566ca97c>] kmemleak_vmalloc+0x3c/0xbe [<00000000979283d8>] __vmalloc_node_range+0x3ac/0x560 [<00000000b4b3712a>] __vmalloc_node+0x56/0x62 [<00000000854f75e2>] vzalloc+0x2c/0x34 [<00000000e9a00db9>] crash_prepare_elf64_headers+0x80/0x30c [<0000000067e8bf48>] elf_kexec_load+0x3e8/0x4ec [<0000000036548e09>] kexec_image_load_default+0x40/0x4c [<0000000079fbe1b4>] sys_kexec_file_load+0x1c4/0x322 [<0000000040c62c03>] ret_from_syscall+0x0/0x2 In elf_kexec_load(), a buffer is allocated via vzalloc() to store elf headers. While it's not freed back to system when kdump kernel is reloaded or unloaded, or when image->elf_header is successfully set and then fails to load kdump kernel for some reason. Fix it by freeing the buffer in arch_kimage_file_post_load_cleanup().
CVE-2022-50764 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: ipv6/sit: use DEV_STATS_INC() to avoid data-races syzbot/KCSAN reported that multiple cpus are updating dev->stats.tx_error concurrently. This is because sit tunnels are NETIF_F_LLTX, meaning their ndo_start_xmit() is not protected by a spinlock. While original KCSAN report was about tx path, rx path has the same issue.
CVE-2022-50763 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: crypto: marvell/octeontx - prevent integer overflows The "code_length" value comes from the firmware file. If your firmware is untrusted realistically there is probably very little you can do to protect yourself. Still we try to limit the damage as much as possible. Also Smatch marks any data read from the filesystem as untrusted and prints warnings if it not capped correctly. The "code_length * 2" can overflow. The round_up(ucode_size, 16) + sizeof() expression can overflow too. Prevent these overflows.
CVE-2022-50762 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Avoid UBSAN error on true_sectors_per_clst() syzbot reported UBSAN error as below: [ 76.901829][ T6677] ================================================================================ [ 76.903908][ T6677] UBSAN: shift-out-of-bounds in fs/ntfs3/super.c:675:13 [ 76.905363][ T6677] shift exponent -247 is negative This patch avoid this error.
CVE-2022-50761 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: x86/xen: Fix memory leak in xen_init_lock_cpu() In xen_init_lock_cpu(), the @name has allocated new string by kasprintf(), if bind_ipi_to_irqhandler() fails, it should be freed, otherwise may lead to a memory leak issue, fix it.
CVE-2022-50760 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix PCI device refcount leak in amdgpu_atrm_get_bios() As comment of pci_get_class() says, it returns a pci_device with its refcount increased and decreased the refcount for the input parameter @from if it is not NULL. If we break the loop in amdgpu_atrm_get_bios() with 'pdev' not NULL, we need to call pci_dev_put() to decrease the refcount. Add the missing pci_dev_put() to avoid refcount leak.
CVE-2022-50759 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: media: i2c: ov5648: Free V4L2 fwnode data on unbind The V4L2 fwnode data structure doesn't get freed on unbind, which leads to a memleak.
CVE-2022-50758 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: staging: vt6655: fix potential memory leak In function device_init_td0_ring, memory is allocated for member td_info of priv->apTD0Rings[i], with i increasing from 0. In case of allocation failure, the memory is freed in reversed order, with i decreasing to 0. However, the case i=0 is left out and thus memory is leaked. Modify the memory freeing loop to include the case i=0.
CVE-2022-50757 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: media: camss: Clean up received buffers on failed start of streaming It is required to return the received buffers, if streaming can not be started. For instance media_pipeline_start() may fail with EPIPE, if a link validation between entities is not passed, and in such a case a user gets a kernel warning: WARNING: CPU: 1 PID: 520 at drivers/media/common/videobuf2/videobuf2-core.c:1592 vb2_start_streaming+0xec/0x160 <snip> Call trace: vb2_start_streaming+0xec/0x160 vb2_core_streamon+0x9c/0x1a0 vb2_ioctl_streamon+0x68/0xbc v4l_streamon+0x30/0x3c __video_do_ioctl+0x184/0x3e0 video_usercopy+0x37c/0x7b0 video_ioctl2+0x24/0x40 v4l2_ioctl+0x4c/0x70 The fix is to correct the error path in video_start_streaming() of camss.
CVE-2022-50756 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: nvme-pci: fix mempool alloc size Convert the max size to bytes to match the units of the divisor that calculates the worst-case number of PRP entries. The result is used to determine how many PRP Lists are required. The code was previously rounding this to 1 list, but we can require 2 in the worst case. In that scenario, the driver would corrupt memory beyond the size provided by the mempool. While unlikely to occur (you'd need a 4MB in exactly 127 phys segments on a queue that doesn't support SGLs), this memory corruption has been observed by kfence.
CVE-2022-50755 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: udf: Avoid double brelse() in udf_rename() syzbot reported a warning like below [1]: VFS: brelse: Trying to free free buffer WARNING: CPU: 2 PID: 7301 at fs/buffer.c:1145 __brelse+0x67/0xa0 ... Call Trace: <TASK> invalidate_bh_lru+0x99/0x150 smp_call_function_many_cond+0xe2a/0x10c0 ? generic_remap_file_range_prep+0x50/0x50 ? __brelse+0xa0/0xa0 ? __mutex_lock+0x21c/0x12d0 ? smp_call_on_cpu+0x250/0x250 ? rcu_read_lock_sched_held+0xb/0x60 ? lock_release+0x587/0x810 ? __brelse+0xa0/0xa0 ? generic_remap_file_range_prep+0x50/0x50 on_each_cpu_cond_mask+0x3c/0x80 blkdev_flush_mapping+0x13a/0x2f0 blkdev_put_whole+0xd3/0xf0 blkdev_put+0x222/0x760 deactivate_locked_super+0x96/0x160 deactivate_super+0xda/0x100 cleanup_mnt+0x222/0x3d0 task_work_run+0x149/0x240 ? task_work_cancel+0x30/0x30 do_exit+0xb29/0x2a40 ? reacquire_held_locks+0x4a0/0x4a0 ? do_raw_spin_lock+0x12a/0x2b0 ? mm_update_next_owner+0x7c0/0x7c0 ? rwlock_bug.part.0+0x90/0x90 ? zap_other_threads+0x234/0x2d0 do_group_exit+0xd0/0x2a0 __x64_sys_exit_group+0x3a/0x50 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd The cause of the issue is that brelse() is called on both ofibh.sbh and ofibh.ebh by udf_find_entry() when it returns NULL. However, brelse() is called by udf_rename(), too. So, b_count on buffer_head becomes unbalanced. This patch fixes the issue by not calling brelse() by udf_rename() when udf_find_entry() returns NULL.
CVE-2022-50754 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: apparmor: fix a memleak in multi_transaction_new() In multi_transaction_new(), the variable t is not freed or passed out on the failure of copy_from_user(t->data, buf, size), which could lead to a memleak. Fix this bug by adding a put_multi_transaction(t) in the error path.
CVE-2022-50753 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to do sanity check on summary info As Wenqing Liu reported in bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216456 BUG: KASAN: use-after-free in recover_data+0x63ae/0x6ae0 [f2fs] Read of size 4 at addr ffff8881464dcd80 by task mount/1013 CPU: 3 PID: 1013 Comm: mount Tainted: G W 6.0.0-rc4 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 Call Trace: dump_stack_lvl+0x45/0x5e print_report.cold+0xf3/0x68d kasan_report+0xa8/0x130 recover_data+0x63ae/0x6ae0 [f2fs] f2fs_recover_fsync_data+0x120d/0x1fc0 [f2fs] f2fs_fill_super+0x4665/0x61e0 [f2fs] mount_bdev+0x2cf/0x3b0 legacy_get_tree+0xed/0x1d0 vfs_get_tree+0x81/0x2b0 path_mount+0x47e/0x19d0 do_mount+0xce/0xf0 __x64_sys_mount+0x12c/0x1a0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd The root cause is: in fuzzed image, SSA table is corrupted: ofs_in_node is larger than ADDRS_PER_PAGE(), result in out-of-range access on 4k-size page. - recover_data - do_recover_data - check_index_in_prev_nodes - f2fs_data_blkaddr This patch adds sanity check on summary info in recovery and GC flow in where the flows rely on them. After patch: [ 29.310883] F2FS-fs (loop0): Inconsistent ofs_in_node:65286 in summary, ino:0, nid:6, max:1018
CVE-2022-50752 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: md/raid5: Remove unnecessary bio_put() in raid5_read_one_chunk() When running chunk-sized reads on disks with badblocks duplicate bio free/puts are observed: ============================================================================= BUG bio-200 (Not tainted): Object already free ----------------------------------------------------------------------------- Allocated in mempool_alloc_slab+0x17/0x20 age=3 cpu=2 pid=7504 __slab_alloc.constprop.0+0x5a/0xb0 kmem_cache_alloc+0x31e/0x330 mempool_alloc_slab+0x17/0x20 mempool_alloc+0x100/0x2b0 bio_alloc_bioset+0x181/0x460 do_mpage_readpage+0x776/0xd00 mpage_readahead+0x166/0x320 blkdev_readahead+0x15/0x20 read_pages+0x13f/0x5f0 page_cache_ra_unbounded+0x18d/0x220 force_page_cache_ra+0x181/0x1c0 page_cache_sync_ra+0x65/0xb0 filemap_get_pages+0x1df/0xaf0 filemap_read+0x1e1/0x700 blkdev_read_iter+0x1e5/0x330 vfs_read+0x42a/0x570 Freed in mempool_free_slab+0x17/0x20 age=3 cpu=2 pid=7504 kmem_cache_free+0x46d/0x490 mempool_free_slab+0x17/0x20 mempool_free+0x66/0x190 bio_free+0x78/0x90 bio_put+0x100/0x1a0 raid5_make_request+0x2259/0x2450 md_handle_request+0x402/0x600 md_submit_bio+0xd9/0x120 __submit_bio+0x11f/0x1b0 submit_bio_noacct_nocheck+0x204/0x480 submit_bio_noacct+0x32e/0xc70 submit_bio+0x98/0x1a0 mpage_readahead+0x250/0x320 blkdev_readahead+0x15/0x20 read_pages+0x13f/0x5f0 page_cache_ra_unbounded+0x18d/0x220 Slab 0xffffea000481b600 objects=21 used=0 fp=0xffff8881206d8940 flags=0x17ffffc0010201(locked|slab|head|node=0|zone=2|lastcpupid=0x1fffff) CPU: 0 PID: 34525 Comm: kworker/u24:2 Not tainted 6.0.0-rc2-localyes-265166-gf11c5343fa3f #143 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Workqueue: raid5wq raid5_do_work Call Trace: <TASK> dump_stack_lvl+0x5a/0x78 dump_stack+0x10/0x16 print_trailer+0x158/0x165 object_err+0x35/0x50 free_debug_processing.cold+0xb7/0xbe __slab_free+0x1ae/0x330 kmem_cache_free+0x46d/0x490 mempool_free_slab+0x17/0x20 mempool_free+0x66/0x190 bio_free+0x78/0x90 bio_put+0x100/0x1a0 mpage_end_io+0x36/0x150 bio_endio+0x2fd/0x360 md_end_io_acct+0x7e/0x90 bio_endio+0x2fd/0x360 handle_failed_stripe+0x960/0xb80 handle_stripe+0x1348/0x3760 handle_active_stripes.constprop.0+0x72a/0xaf0 raid5_do_work+0x177/0x330 process_one_work+0x616/0xb20 worker_thread+0x2bd/0x6f0 kthread+0x179/0x1b0 ret_from_fork+0x22/0x30 </TASK> The double free is caused by an unnecessary bio_put() in the if(is_badblock(...)) error path in raid5_read_one_chunk(). The error path was moved ahead of bio_alloc_clone() in c82aa1b76787c ("md/raid5: move checking badblock before clone bio in raid5_read_one_chunk"). The previous code checked and freed align_bio which required a bio_put. After the move that is no longer needed as raid_bio is returned to the control of the common io path which performs its own endio resulting in a double free on bad device blocks.
CVE-2022-50751 1 Linux 1 Linux Kernel 2025-12-24 N/A
In the Linux kernel, the following vulnerability has been resolved: configfs: fix possible memory leak in configfs_create_dir() kmemleak reported memory leaks in configfs_create_dir(): unreferenced object 0xffff888009f6af00 (size 192): comm "modprobe", pid 3777, jiffies 4295537735 (age 233.784s) backtrace: kmem_cache_alloc (mm/slub.c:3250 mm/slub.c:3256 mm/slub.c:3263 mm/slub.c:3273) new_fragment (./include/linux/slab.h:600 fs/configfs/dir.c:163) configfs_register_subsystem (fs/configfs/dir.c:1857) basic_write (drivers/hwtracing/stm/p_basic.c:14) stm_p_basic do_one_initcall (init/main.c:1296) do_init_module (kernel/module/main.c:2455) ... unreferenced object 0xffff888003ba7180 (size 96): comm "modprobe", pid 3777, jiffies 4295537735 (age 233.784s) backtrace: kmem_cache_alloc (mm/slub.c:3250 mm/slub.c:3256 mm/slub.c:3263 mm/slub.c:3273) configfs_new_dirent (./include/linux/slab.h:723 fs/configfs/dir.c:194) configfs_make_dirent (fs/configfs/dir.c:248) configfs_create_dir (fs/configfs/dir.c:296) configfs_attach_group.isra.28 (fs/configfs/dir.c:816 fs/configfs/dir.c:852) configfs_register_subsystem (fs/configfs/dir.c:1881) basic_write (drivers/hwtracing/stm/p_basic.c:14) stm_p_basic do_one_initcall (init/main.c:1296) do_init_module (kernel/module/main.c:2455) ... This is because the refcount is not correct in configfs_make_dirent(). For normal stage, the refcount is changing as: configfs_register_subsystem() configfs_create_dir() configfs_make_dirent() configfs_new_dirent() # set s_count = 1 dentry->d_fsdata = configfs_get(sd); # s_count = 2 ... configfs_unregister_subsystem() configfs_remove_dir() remove_dir() configfs_remove_dirent() # s_count = 1 dput() ... *dentry_unlink_inode()* configfs_d_iput() # s_count = 0, release However, if we failed in configfs_create(): configfs_register_subsystem() configfs_create_dir() configfs_make_dirent() # s_count = 2 ... configfs_create() # fail ->out_remove: configfs_remove_dirent(dentry) configfs_put(sd) # s_count = 1 return PTR_ERR(inode); There is no inode in the error path, so the configfs_d_iput() is lost and makes sd and fragment memory leaked. To fix this, when we failed in configfs_create(), manually call configfs_put(sd) to keep the refcount correct.