| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
padata: do not leak refcount in reorder_work
A recent patch that addressed a UAF introduced a reference count leak:
the parallel_data refcount is incremented unconditionally, regardless
of the return value of queue_work(). If the work item is already queued,
the incremented refcount is never decremented.
Fix this by checking the return value of queue_work() and decrementing
the refcount when necessary.
Resolves:
Unreferenced object 0xffff9d9f421e3d80 (size 192):
comm "cryptomgr_probe", pid 157, jiffies 4294694003
hex dump (first 32 bytes):
80 8b cf 41 9f 9d ff ff b8 97 e0 89 ff ff ff ff ...A............
d0 97 e0 89 ff ff ff ff 19 00 00 00 1f 88 23 00 ..............#.
backtrace (crc 838fb36):
__kmalloc_cache_noprof+0x284/0x320
padata_alloc_pd+0x20/0x1e0
padata_alloc_shell+0x3b/0xa0
0xffffffffc040a54d
cryptomgr_probe+0x43/0xc0
kthread+0xf6/0x1f0
ret_from_fork+0x2f/0x50
ret_from_fork_asm+0x1a/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
vxlan: Annotate FDB data races
The 'used' and 'updated' fields in the FDB entry structure can be
accessed concurrently by multiple threads, leading to reports such as
[1]. Can be reproduced using [2].
Suppress these reports by annotating these accesses using
READ_ONCE() / WRITE_ONCE().
[1]
BUG: KCSAN: data-race in vxlan_xmit / vxlan_xmit
write to 0xffff942604d263a8 of 8 bytes by task 286 on cpu 0:
vxlan_xmit+0xb29/0x2380
dev_hard_start_xmit+0x84/0x2f0
__dev_queue_xmit+0x45a/0x1650
packet_xmit+0x100/0x150
packet_sendmsg+0x2114/0x2ac0
__sys_sendto+0x318/0x330
__x64_sys_sendto+0x76/0x90
x64_sys_call+0x14e8/0x1c00
do_syscall_64+0x9e/0x1a0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
read to 0xffff942604d263a8 of 8 bytes by task 287 on cpu 2:
vxlan_xmit+0xadf/0x2380
dev_hard_start_xmit+0x84/0x2f0
__dev_queue_xmit+0x45a/0x1650
packet_xmit+0x100/0x150
packet_sendmsg+0x2114/0x2ac0
__sys_sendto+0x318/0x330
__x64_sys_sendto+0x76/0x90
x64_sys_call+0x14e8/0x1c00
do_syscall_64+0x9e/0x1a0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
value changed: 0x00000000fffbac6e -> 0x00000000fffbac6f
Reported by Kernel Concurrency Sanitizer on:
CPU: 2 UID: 0 PID: 287 Comm: mausezahn Not tainted 6.13.0-rc7-01544-gb4b270f11a02 #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014
[2]
#!/bin/bash
set +H
echo whitelist > /sys/kernel/debug/kcsan
echo !vxlan_xmit > /sys/kernel/debug/kcsan
ip link add name vx0 up type vxlan id 10010 dstport 4789 local 192.0.2.1
bridge fdb add 00:11:22:33:44:55 dev vx0 self static dst 198.51.100.1
taskset -c 0 mausezahn vx0 -a own -b 00:11:22:33:44:55 -c 0 -q &
taskset -c 2 mausezahn vx0 -a own -b 00:11:22:33:44:55 -c 0 -q & |
| In the Linux kernel, the following vulnerability has been resolved:
serial: mctrl_gpio: split disable_ms into sync and no_sync APIs
The following splat has been observed on a SAMA5D27 platform using
atmel_serial:
BUG: sleeping function called from invalid context at kernel/irq/manage.c:738
in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 27, name: kworker/u5:0
preempt_count: 1, expected: 0
INFO: lockdep is turned off.
irq event stamp: 0
hardirqs last enabled at (0): [<00000000>] 0x0
hardirqs last disabled at (0): [<c01588f0>] copy_process+0x1c4c/0x7bec
softirqs last enabled at (0): [<c0158944>] copy_process+0x1ca0/0x7bec
softirqs last disabled at (0): [<00000000>] 0x0
CPU: 0 UID: 0 PID: 27 Comm: kworker/u5:0 Not tainted 6.13.0-rc7+ #74
Hardware name: Atmel SAMA5
Workqueue: hci0 hci_power_on [bluetooth]
Call trace:
unwind_backtrace from show_stack+0x18/0x1c
show_stack from dump_stack_lvl+0x44/0x70
dump_stack_lvl from __might_resched+0x38c/0x598
__might_resched from disable_irq+0x1c/0x48
disable_irq from mctrl_gpio_disable_ms+0x74/0xc0
mctrl_gpio_disable_ms from atmel_disable_ms.part.0+0x80/0x1f4
atmel_disable_ms.part.0 from atmel_set_termios+0x764/0x11e8
atmel_set_termios from uart_change_line_settings+0x15c/0x994
uart_change_line_settings from uart_set_termios+0x2b0/0x668
uart_set_termios from tty_set_termios+0x600/0x8ec
tty_set_termios from ttyport_set_flow_control+0x188/0x1e0
ttyport_set_flow_control from wilc_setup+0xd0/0x524 [hci_wilc]
wilc_setup [hci_wilc] from hci_dev_open_sync+0x330/0x203c [bluetooth]
hci_dev_open_sync [bluetooth] from hci_dev_do_open+0x40/0xb0 [bluetooth]
hci_dev_do_open [bluetooth] from hci_power_on+0x12c/0x664 [bluetooth]
hci_power_on [bluetooth] from process_one_work+0x998/0x1a38
process_one_work from worker_thread+0x6e0/0xfb4
worker_thread from kthread+0x3d4/0x484
kthread from ret_from_fork+0x14/0x28
This warning is emitted when trying to toggle, at the highest level,
some flow control (with serdev_device_set_flow_control) in a device
driver. At the lowest level, the atmel_serial driver is using
serial_mctrl_gpio lib to enable/disable the corresponding IRQs
accordingly. The warning emitted by CONFIG_DEBUG_ATOMIC_SLEEP is due to
disable_irq (called in mctrl_gpio_disable_ms) being possibly called in
some atomic context (some tty drivers perform modem lines configuration
in regions protected by port lock).
Split mctrl_gpio_disable_ms into two differents APIs, a non-blocking one
and a blocking one. Replace mctrl_gpio_disable_ms calls with the
relevant version depending on whether the call is protected by some port
lock. |
| In the Linux kernel, the following vulnerability has been resolved:
__legitimize_mnt(): check for MNT_SYNC_UMOUNT should be under mount_lock
... or we risk stealing final mntput from sync umount - raising mnt_count
after umount(2) has verified that victim is not busy, but before it
has set MNT_SYNC_UMOUNT; in that case __legitimize_mnt() doesn't see
that it's safe to quietly undo mnt_count increment and leaves dropping
the reference to caller, where it'll be a full-blown mntput().
Check under mount_lock is needed; leaving the current one done before
taking that makes no sense - it's nowhere near common enough to bother
with. |
| In the Linux kernel, the following vulnerability has been resolved:
net: pktgen: fix access outside of user given buffer in pktgen_thread_write()
Honour the user given buffer size for the strn_len() calls (otherwise
strn_len() will access memory outside of the user given buffer). |
| In the Linux kernel, the following vulnerability has been resolved:
genirq/msi: Store the IOMMU IOVA directly in msi_desc instead of iommu_cookie
The IOMMU translation for MSI message addresses has been a 2-step process,
separated in time:
1) iommu_dma_prepare_msi(): A cookie pointer containing the IOVA address
is stored in the MSI descriptor when an MSI interrupt is allocated.
2) iommu_dma_compose_msi_msg(): this cookie pointer is used to compute a
translated message address.
This has an inherent lifetime problem for the pointer stored in the cookie
that must remain valid between the two steps. However, there is no locking
at the irq layer that helps protect the lifetime. Today, this works under
the assumption that the iommu domain is not changed while MSI interrupts
being programmed. This is true for normal DMA API users within the kernel,
as the iommu domain is attached before the driver is probed and cannot be
changed while a driver is attached.
Classic VFIO type1 also prevented changing the iommu domain while VFIO was
running as it does not support changing the "container" after starting up.
However, iommufd has improved this so that the iommu domain can be changed
during VFIO operation. This potentially allows userspace to directly race
VFIO_DEVICE_ATTACH_IOMMUFD_PT (which calls iommu_attach_group()) and
VFIO_DEVICE_SET_IRQS (which calls into iommu_dma_compose_msi_msg()).
This potentially causes both the cookie pointer and the unlocked call to
iommu_get_domain_for_dev() on the MSI translation path to become UAFs.
Fix the MSI cookie UAF by removing the cookie pointer. The translated IOVA
address is already known during iommu_dma_prepare_msi() and cannot change.
Thus, it can simply be stored as an integer in the MSI descriptor.
The other UAF related to iommu_get_domain_for_dev() will be addressed in
patch "iommu: Make iommu_dma_prepare_msi() into a generic operation" by
using the IOMMU group mutex. |
| In the Linux kernel, the following vulnerability has been resolved:
jffs2: check that raw node were preallocated before writing summary
Syzkaller detected a kernel bug in jffs2_link_node_ref, caused by fault
injection in jffs2_prealloc_raw_node_refs. jffs2_sum_write_sumnode doesn't
check return value of jffs2_prealloc_raw_node_refs and simply lets any
error propagate into jffs2_sum_write_data, which eventually calls
jffs2_link_node_ref in order to link the summary to an expectedly allocated
node.
kernel BUG at fs/jffs2/nodelist.c:592!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 1 PID: 31277 Comm: syz-executor.7 Not tainted 6.1.128-syzkaller-00139-ge10f83ca10a1 #0
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:jffs2_link_node_ref+0x570/0x690 fs/jffs2/nodelist.c:592
Call Trace:
<TASK>
jffs2_sum_write_data fs/jffs2/summary.c:841 [inline]
jffs2_sum_write_sumnode+0xd1a/0x1da0 fs/jffs2/summary.c:874
jffs2_do_reserve_space+0xa18/0xd60 fs/jffs2/nodemgmt.c:388
jffs2_reserve_space+0x55f/0xaa0 fs/jffs2/nodemgmt.c:197
jffs2_write_inode_range+0x246/0xb50 fs/jffs2/write.c:362
jffs2_write_end+0x726/0x15d0 fs/jffs2/file.c:301
generic_perform_write+0x314/0x5d0 mm/filemap.c:3856
__generic_file_write_iter+0x2ae/0x4d0 mm/filemap.c:3973
generic_file_write_iter+0xe3/0x350 mm/filemap.c:4005
call_write_iter include/linux/fs.h:2265 [inline]
do_iter_readv_writev+0x20f/0x3c0 fs/read_write.c:735
do_iter_write+0x186/0x710 fs/read_write.c:861
vfs_iter_write+0x70/0xa0 fs/read_write.c:902
iter_file_splice_write+0x73b/0xc90 fs/splice.c:685
do_splice_from fs/splice.c:763 [inline]
direct_splice_actor+0x10c/0x170 fs/splice.c:950
splice_direct_to_actor+0x337/0xa10 fs/splice.c:896
do_splice_direct+0x1a9/0x280 fs/splice.c:1002
do_sendfile+0xb13/0x12c0 fs/read_write.c:1255
__do_sys_sendfile64 fs/read_write.c:1323 [inline]
__se_sys_sendfile64 fs/read_write.c:1309 [inline]
__x64_sys_sendfile64+0x1cf/0x210 fs/read_write.c:1309
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x35/0x80 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Fix this issue by checking return value of jffs2_prealloc_raw_node_refs
before calling jffs2_sum_write_data.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: dell_rbu: Fix list usage
Pass the correct list head to list_for_each_entry*() when looping through
the packet list.
Without this patch, reading the packet data via sysfs will show the data
incorrectly (because it starts at the wrong packet), and clearing the
packet list will result in a NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
fbcon: Make sure modelist not set on unregistered console
It looks like attempting to write to the "store_modes" sysfs node will
run afoul of unregistered consoles:
UBSAN: array-index-out-of-bounds in drivers/video/fbdev/core/fbcon.c:122:28
index -1 is out of range for type 'fb_info *[32]'
...
fbcon_info_from_console+0x192/0x1a0 drivers/video/fbdev/core/fbcon.c:122
fbcon_new_modelist+0xbf/0x2d0 drivers/video/fbdev/core/fbcon.c:3048
fb_new_modelist+0x328/0x440 drivers/video/fbdev/core/fbmem.c:673
store_modes+0x1c9/0x3e0 drivers/video/fbdev/core/fbsysfs.c:113
dev_attr_store+0x55/0x80 drivers/base/core.c:2439
static struct fb_info *fbcon_registered_fb[FB_MAX];
...
static signed char con2fb_map[MAX_NR_CONSOLES];
...
static struct fb_info *fbcon_info_from_console(int console)
...
return fbcon_registered_fb[con2fb_map[console]];
If con2fb_map contains a -1 things go wrong here. Instead, return NULL,
as callers of fbcon_info_from_console() are trying to compare against
existing "info" pointers, so error handling should kick in correctly. |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: sch_sfq: reject invalid perturb period
Gerrard Tai reported that SFQ perturb_period has no range check yet,
and this can be used to trigger a race condition fixed in a separate patch.
We want to make sure ctl->perturb_period * HZ will not overflow
and is positive.
tc qd add dev lo root sfq perturb -10 # negative value : error
Error: sch_sfq: invalid perturb period.
tc qd add dev lo root sfq perturb 1000000000 # too big : error
Error: sch_sfq: invalid perturb period.
tc qd add dev lo root sfq perturb 2000000 # acceptable value
tc -s -d qd sh dev lo
qdisc sfq 8005: root refcnt 2 limit 127p quantum 64Kb depth 127 flows 128 divisor 1024 perturb 2000000sec
Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
backlog 0b 0p requeues 0 |
| In the Linux kernel, the following vulnerability has been resolved:
soc: aspeed: Add NULL check in aspeed_lpc_enable_snoop()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
aspeed_lpc_enable_snoop() does not check for this case, which results in a
NULL pointer dereference.
Add NULL check after devm_kasprintf() to prevent this issue.
[arj: Fix Fixes: tag to use subject from 3772e5da4454] |
| In the Linux kernel, the following vulnerability has been resolved:
backlight: pm8941: Add NULL check in wled_configure()
devm_kasprintf() returns NULL when memory allocation fails. Currently,
wled_configure() does not check for this case, which results in a NULL
pointer dereference.
Add NULL check after devm_kasprintf() to prevent this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
i40e: fix MMIO write access to an invalid page in i40e_clear_hw
When the device sends a specific input, an integer underflow can occur, leading
to MMIO write access to an invalid page.
Prevent the integer underflow by changing the type of related variables. |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (asus-ec-sensors) check sensor index in read_string()
Prevent a potential invalid memory access when the requested sensor
is not found.
find_ec_sensor_index() may return a negative value (e.g. -ENOENT),
but its result was used without checking, which could lead to
undefined behavior when passed to get_sensor_info().
Add a proper check to return -EINVAL if sensor_index is negative.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
[groeck: Return error code returned from find_ec_sensor_index] |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: max20086: fix invalid memory access
max20086_parse_regulators_dt() calls of_regulator_match() using an
array of struct of_regulator_match allocated on the stack for the
matches argument.
of_regulator_match() calls devm_of_regulator_put_matches(), which calls
devres_alloc() to allocate a struct devm_of_regulator_matches which will
be de-allocated using devm_of_regulator_put_matches().
struct devm_of_regulator_matches is populated with the stack allocated
matches array.
If the device fails to probe, devm_of_regulator_put_matches() will be
called and will try to call of_node_put() on that stack pointer,
generating the following dmesg entries:
max20086 6-0028: Failed to read DEVICE_ID reg: -121
kobject: '\xc0$\xa5\x03' (000000002cebcb7a): is not initialized, yet
kobject_put() is being called.
Followed by a stack trace matching the call flow described above.
Switch to allocating the matches array using devm_kcalloc() to
avoid accessing the stack pointer long after it's out of scope.
This also has the advantage of allowing multiple max20086 to probe
without overriding the data stored inside the global of_regulator_match. |
| In the Linux kernel, the following vulnerability has been resolved:
net: openvswitch: Fix the dead loop of MPLS parse
The unexpected MPLS packet may not end with the bottom label stack.
When there are many stacks, The label count value has wrapped around.
A dead loop occurs, soft lockup/CPU stuck finally.
stack backtrace:
UBSAN: array-index-out-of-bounds in /build/linux-0Pa0xK/linux-5.15.0/net/openvswitch/flow.c:662:26
index -1 is out of range for type '__be32 [3]'
CPU: 34 PID: 0 Comm: swapper/34 Kdump: loaded Tainted: G OE 5.15.0-121-generic #131-Ubuntu
Hardware name: Dell Inc. PowerEdge C6420/0JP9TF, BIOS 2.12.2 07/14/2021
Call Trace:
<IRQ>
show_stack+0x52/0x5c
dump_stack_lvl+0x4a/0x63
dump_stack+0x10/0x16
ubsan_epilogue+0x9/0x36
__ubsan_handle_out_of_bounds.cold+0x44/0x49
key_extract_l3l4+0x82a/0x840 [openvswitch]
? kfree_skbmem+0x52/0xa0
key_extract+0x9c/0x2b0 [openvswitch]
ovs_flow_key_extract+0x124/0x350 [openvswitch]
ovs_vport_receive+0x61/0xd0 [openvswitch]
? kernel_init_free_pages.part.0+0x4a/0x70
? get_page_from_freelist+0x353/0x540
netdev_port_receive+0xc4/0x180 [openvswitch]
? netdev_port_receive+0x180/0x180 [openvswitch]
netdev_frame_hook+0x1f/0x40 [openvswitch]
__netif_receive_skb_core.constprop.0+0x23a/0xf00
__netif_receive_skb_list_core+0xfa/0x240
netif_receive_skb_list_internal+0x18e/0x2a0
napi_complete_done+0x7a/0x1c0
bnxt_poll+0x155/0x1c0 [bnxt_en]
__napi_poll+0x30/0x180
net_rx_action+0x126/0x280
? bnxt_msix+0x67/0x80 [bnxt_en]
handle_softirqs+0xda/0x2d0
irq_exit_rcu+0x96/0xc0
common_interrupt+0x8e/0xa0
</IRQ> |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Check rcu_read_lock_trace_held() in bpf_map_lookup_percpu_elem()
bpf_map_lookup_percpu_elem() helper is also available for sleepable bpf
program. When BPF JIT is disabled or under 32-bit host,
bpf_map_lookup_percpu_elem() will not be inlined. Using it in a
sleepable bpf program will trigger the warning in
bpf_map_lookup_percpu_elem(), because the bpf program only holds
rcu_read_lock_trace lock. Therefore, add the missed check. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/hugetlb: fix huge_pmd_unshare() vs GUP-fast race
huge_pmd_unshare() drops a reference on a page table that may have
previously been shared across processes, potentially turning it into a
normal page table used in another process in which unrelated VMAs can
afterwards be installed.
If this happens in the middle of a concurrent gup_fast(), gup_fast() could
end up walking the page tables of another process. While I don't see any
way in which that immediately leads to kernel memory corruption, it is
really weird and unexpected.
Fix it with an explicit broadcast IPI through tlb_remove_table_sync_one(),
just like we do in khugepaged when removing page tables for a THP
collapse. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/hugetlb: unshare page tables during VMA split, not before
Currently, __split_vma() triggers hugetlb page table unsharing through
vm_ops->may_split(). This happens before the VMA lock and rmap locks are
taken - which is too early, it allows racing VMA-locked page faults in our
process and racing rmap walks from other processes to cause page tables to
be shared again before we actually perform the split.
Fix it by explicitly calling into the hugetlb unshare logic from
__split_vma() in the same place where THP splitting also happens. At that
point, both the VMA and the rmap(s) are write-locked.
An annoying detail is that we can now call into the helper
hugetlb_unshare_pmds() from two different locking contexts:
1. from hugetlb_split(), holding:
- mmap lock (exclusively)
- VMA lock
- file rmap lock (exclusively)
2. hugetlb_unshare_all_pmds(), which I think is designed to be able to
call us with only the mmap lock held (in shared mode), but currently
only runs while holding mmap lock (exclusively) and VMA lock
Backporting note:
This commit fixes a racy protection that was introduced in commit
b30c14cd6102 ("hugetlb: unshare some PMDs when splitting VMAs"); that
commit claimed to fix an issue introduced in 5.13, but it should actually
also go all the way back.
[jannh@google.com: v2] |
| In the Linux kernel, the following vulnerability has been resolved:
jfs: Fix null-ptr-deref in jfs_ioc_trim
[ Syzkaller Report ]
Oops: general protection fault, probably for non-canonical address
0xdffffc0000000087: 0000 [#1
KASAN: null-ptr-deref in range [0x0000000000000438-0x000000000000043f]
CPU: 2 UID: 0 PID: 10614 Comm: syz-executor.0 Not tainted
6.13.0-rc6-gfbfd64d25c7a-dirty #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Sched_ext: serialise (enabled+all), task: runnable_at=-30ms
RIP: 0010:jfs_ioc_trim+0x34b/0x8f0
Code: e7 e8 59 a4 87 fe 4d 8b 24 24 4d 8d bc 24 38 04 00 00 48 8d 93
90 82 fe ff 4c 89 ff 31 f6
RSP: 0018:ffffc900055f7cd0 EFLAGS: 00010206
RAX: 0000000000000087 RBX: 00005866a9e67ff8 RCX: 000000000000000a
RDX: 0000000000000001 RSI: 0000000000000004 RDI: 0000000000000001
RBP: dffffc0000000000 R08: ffff88807c180003 R09: 1ffff1100f830000
R10: dffffc0000000000 R11: ffffed100f830001 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000438
FS: 00007fe520225640(0000) GS:ffff8880b7e80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005593c91b2c88 CR3: 000000014927c000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? __die_body+0x61/0xb0
? die_addr+0xb1/0xe0
? exc_general_protection+0x333/0x510
? asm_exc_general_protection+0x26/0x30
? jfs_ioc_trim+0x34b/0x8f0
jfs_ioctl+0x3c8/0x4f0
? __pfx_jfs_ioctl+0x10/0x10
? __pfx_jfs_ioctl+0x10/0x10
__se_sys_ioctl+0x269/0x350
? __pfx___se_sys_ioctl+0x10/0x10
? do_syscall_64+0xfb/0x210
do_syscall_64+0xee/0x210
? syscall_exit_to_user_mode+0x1e0/0x330
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fe51f4903ad
Code: c3 e8 a7 2b 00 00 0f 1f 80 00 00 00 00 f3 0f 1e fa 48 89 f8 48
89 f7 48 89 d6 48 89 ca 4d
RSP: 002b:00007fe5202250c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007fe51f5cbf80 RCX: 00007fe51f4903ad
RDX: 0000000020000680 RSI: 00000000c0185879 RDI: 0000000000000005
RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007fe520225640
R13: 000000000000000e R14: 00007fe51f44fca0 R15: 00007fe52021d000
</TASK>
Modules linked in:
---[ end trace 0000000000000000 ]---
RIP: 0010:jfs_ioc_trim+0x34b/0x8f0
Code: e7 e8 59 a4 87 fe 4d 8b 24 24 4d 8d bc 24 38 04 00 00 48 8d 93
90 82 fe ff 4c 89 ff 31 f6
RSP: 0018:ffffc900055f7cd0 EFLAGS: 00010206
RAX: 0000000000000087 RBX: 00005866a9e67ff8 RCX: 000000000000000a
RDX: 0000000000000001 RSI: 0000000000000004 RDI: 0000000000000001
RBP: dffffc0000000000 R08: ffff88807c180003 R09: 1ffff1100f830000
R10: dffffc0000000000 R11: ffffed100f830001 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000001 R15: 0000000000000438
FS: 00007fe520225640(0000) GS:ffff8880b7e80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005593c91b2c88 CR3: 000000014927c000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Kernel panic - not syncing: Fatal exception
[ Analysis ]
We believe that we have found a concurrency bug in the `fs/jfs` module
that results in a null pointer dereference. There is a closely related
issue which has been fixed:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d6c1b3599b2feb5c7291f5ac3a36e5fa7cedb234
... but, unfortunately, the accepted patch appears to still be
susceptible to a null pointer dereference under some interleavings.
To trigger the bug, we think that `JFS_SBI(ipbmap->i_sb)->bmap` is set
to NULL in `dbFreeBits` and then dereferenced in `jfs_ioc_trim`. This
bug manifests quite rarely under normal circumstances, but is
triggereable from a syz-program. |