| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A flaw has been found in Open5GS up to 2.7.5. Impacted is the function ogs_gtp2_f_teid_to_ip of the file /sgwc/s11-handler.c of the component SGWC. Executing a manipulation can lead to denial of service. The attack may be performed from remote. The exploit has been published and may be used. It is advisable to implement a patch to correct this issue. The issue report is flagged as already-fixed. |
| Issue summary: An invalid or NULL pointer dereference can happen in
an application processing a malformed PKCS#12 file.
Impact summary: An application processing a malformed PKCS#12 file can be
caused to dereference an invalid or NULL pointer on memory read, resulting
in a Denial of Service.
A type confusion vulnerability exists in PKCS#12 parsing code where
an ASN1_TYPE union member is accessed without first validating the type,
causing an invalid pointer read.
The location is constrained to a 1-byte address space, meaning any
attempted pointer manipulation can only target addresses between 0x00 and 0xFF.
This range corresponds to the zero page, which is unmapped on most modern
operating systems and will reliably result in a crash, leading only to a
Denial of Service. Exploiting this issue also requires a user or application
to process a maliciously crafted PKCS#12 file. It is uncommon to accept
untrusted PKCS#12 files in applications as they are usually used to store
private keys which are trusted by definition. For these reasons, the issue
was assessed as Low severity.
The FIPS modules in 3.5, 3.4, 3.3 and 3.0 are not affected by this issue,
as the PKCS12 implementation is outside the OpenSSL FIPS module boundary.
OpenSSL 3.6, 3.5, 3.4, 3.3, 3.0 and 1.1.1 are vulnerable to this issue.
OpenSSL 1.0.2 is not affected by this issue. |
| Issue summary: A type confusion vulnerability exists in the signature
verification of signed PKCS#7 data where an ASN1_TYPE union member is
accessed without first validating the type, causing an invalid or NULL
pointer dereference when processing malformed PKCS#7 data.
Impact summary: An application performing signature verification of PKCS#7
data or calling directly the PKCS7_digest_from_attributes() function can be
caused to dereference an invalid or NULL pointer when reading, resulting in
a Denial of Service.
The function PKCS7_digest_from_attributes() accesses the message digest attribute
value without validating its type. When the type is not V_ASN1_OCTET_STRING,
this results in accessing invalid memory through the ASN1_TYPE union, causing
a crash.
Exploiting this vulnerability requires an attacker to provide a malformed
signed PKCS#7 to an application that verifies it. The impact of the
exploit is just a Denial of Service, the PKCS7 API is legacy and applications
should be using the CMS API instead. For these reasons the issue was
assessed as Low severity.
The FIPS modules in 3.5, 3.4, 3.3 and 3.0 are not affected by this issue,
as the PKCS#7 parsing implementation is outside the OpenSSL FIPS module
boundary.
OpenSSL 3.6, 3.5, 3.4, 3.3, 3.0, 1.1.1 and 1.0.2 are vulnerable to this issue. |
| A vulnerability has been found in Open5GS up to 2.7.6. The affected element is the function sgwc_s11_handle_modify_bearer_request of the file /sgwc/s11-handler.c of the component SGWC. The manipulation leads to denial of service. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. Applying a patch is the recommended action to fix this issue. The issue report is flagged as already-fixed. |
| Issue summary: PBMAC1 parameters in PKCS#12 files are missing validation
which can trigger a stack-based buffer overflow, invalid pointer or NULL
pointer dereference during MAC verification.
Impact summary: The stack buffer overflow or NULL pointer dereference may
cause a crash leading to Denial of Service for an application that parses
untrusted PKCS#12 files. The buffer overflow may also potentially enable
code execution depending on platform mitigations.
When verifying a PKCS#12 file that uses PBMAC1 for the MAC, the PBKDF2
salt and keylength parameters from the file are used without validation.
If the value of keylength exceeds the size of the fixed stack buffer used
for the derived key (64 bytes), the key derivation will overflow the buffer.
The overflow length is attacker-controlled. Also, if the salt parameter is
not an OCTET STRING type this can lead to invalid or NULL pointer
dereference.
Exploiting this issue requires a user or application to process
a maliciously crafted PKCS#12 file. It is uncommon to accept untrusted
PKCS#12 files in applications as they are usually used to store private
keys which are trusted by definition. For this reason the issue was assessed
as Moderate severity.
The FIPS modules in 3.6, 3.5 and 3.4 are not affected by this issue, as
PKCS#12 processing is outside the OpenSSL FIPS module boundary.
OpenSSL 3.6, 3.5 and 3.4 are vulnerable to this issue.
OpenSSL 3.3, 3.0, 1.1.1 and 1.0.2 are not affected by this issue as they do
not support PBMAC1 in PKCS#12. |
| A command injection vulnerability may be exploited after the admin's authentication via the configuration backup restoration function of the TP-Link Archer BE230 v1.2. Successful exploitation could allow an attacker to gain full administrative control of the device, resulting in severe compromise of configuration integrity, network security, and service availability.
This CVE covers one of multiple distinct OS command injection issues identified across separate code paths. Although similar in nature, each instance is tracked under a unique CVE ID.
This issue affects Archer BE230 v1.2 < 1.2.4 Build 20251218 rel.70420. |
| SolarWinds Web Help Desk was found to be susceptible to a security control bypass vulnerability that if exploited, could allow an unauthenticated attacker to gain access to certain restricted functionality. |
| Issue summary: Parsing CMS AuthEnvelopedData message with maliciously
crafted AEAD parameters can trigger a stack buffer overflow.
Impact summary: A stack buffer overflow may lead to a crash, causing Denial
of Service, or potentially remote code execution.
When parsing CMS AuthEnvelopedData structures that use AEAD ciphers such as
AES-GCM, the IV (Initialization Vector) encoded in the ASN.1 parameters is
copied into a fixed-size stack buffer without verifying that its length fits
the destination. An attacker can supply a crafted CMS message with an
oversized IV, causing a stack-based out-of-bounds write before any
authentication or tag verification occurs.
Applications and services that parse untrusted CMS or PKCS#7 content using
AEAD ciphers (e.g., S/MIME AuthEnvelopedData with AES-GCM) are vulnerable.
Because the overflow occurs prior to authentication, no valid key material
is required to trigger it. While exploitability to remote code execution
depends on platform and toolchain mitigations, the stack-based write
primitive represents a severe risk.
The FIPS modules in 3.6, 3.5, 3.4, 3.3 and 3.0 are not affected by this
issue, as the CMS implementation is outside the OpenSSL FIPS module
boundary.
OpenSSL 3.6, 3.5, 3.4, 3.3 and 3.0 are vulnerable to this issue.
OpenSSL 1.1.1 and 1.0.2 are not affected by this issue. |
| Vulnerability in the Oracle FLEXCUBE Investor Servicing product of Oracle Financial Services Applications (component: Security Management System). Supported versions that are affected are 14.5.0.15.0, 14.7.0.8.0 and 14.8.0.1.0. Easily exploitable vulnerability allows low privileged attacker with network access via HTTP to compromise Oracle FLEXCUBE Investor Servicing. Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Oracle FLEXCUBE Investor Servicing accessible data as well as unauthorized access to critical data or complete access to all Oracle FLEXCUBE Investor Servicing accessible data. CVSS 3.1 Base Score 8.1 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N). |
| SolarWinds Web Help Desk was found to be susceptible to a hardcoded credentials vulnerability that, under certain situations, could allow access to administrative functions. |
| Issue summary: If an application using the SSL_CIPHER_find() function in
a QUIC protocol client or server receives an unknown cipher suite from
the peer, a NULL dereference occurs.
Impact summary: A NULL pointer dereference leads to abnormal termination of
the running process causing Denial of Service.
Some applications call SSL_CIPHER_find() from the client_hello_cb callback
on the cipher ID received from the peer. If this is done with an SSL object
implementing the QUIC protocol, NULL pointer dereference will happen if
the examined cipher ID is unknown or unsupported.
As it is not very common to call this function in applications using the QUIC
protocol and the worst outcome is Denial of Service, the issue was assessed
as Low severity.
The vulnerable code was introduced in the 3.2 version with the addition
of the QUIC protocol support.
The FIPS modules in 3.6, 3.5, 3.4 and 3.3 are not affected by this issue,
as the QUIC implementation is outside the OpenSSL FIPS module boundary.
OpenSSL 3.6, 3.5, 3.4 and 3.3 are vulnerable to this issue.
OpenSSL 3.0, 1.1.1 and 1.0.2 are not affected by this issue. |
| The WorklogPRO - Timesheets for Jira plugin in Jira Data Center before version 4.23.6-jira10 and before version 4.23.5-jira9 allows users and attackers to inject arbitrary HTML or JavaScript via a Cross-Site Scripting (XSS) vulnerability. The vulnerability is exploited via a specially crafted payload placed in an issue's summary field |
| Issue summary: The 'openssl dgst' command-line tool silently truncates input
data to 16MB when using one-shot signing algorithms and reports success instead
of an error.
Impact summary: A user signing or verifying files larger than 16MB with
one-shot algorithms (such as Ed25519, Ed448, or ML-DSA) may believe the entire
file is authenticated while trailing data beyond 16MB remains unauthenticated.
When the 'openssl dgst' command is used with algorithms that only support
one-shot signing (Ed25519, Ed448, ML-DSA-44, ML-DSA-65, ML-DSA-87), the input
is buffered with a 16MB limit. If the input exceeds this limit, the tool
silently truncates to the first 16MB and continues without signaling an error,
contrary to what the documentation states. This creates an integrity gap where
trailing bytes can be modified without detection if both signing and
verification are performed using the same affected codepath.
The issue affects only the command-line tool behavior. Verifiers that process
the full message using library APIs will reject the signature, so the risk
primarily affects workflows that both sign and verify with the affected
'openssl dgst' command. Streaming digest algorithms for 'openssl dgst' and
library users are unaffected.
The FIPS modules in 3.5 and 3.6 are not affected by this issue, as the
command-line tools are outside the OpenSSL FIPS module boundary.
OpenSSL 3.5 and 3.6 are vulnerable to this issue.
OpenSSL 3.4, 3.3, 3.0, 1.1.1 and 1.0.2 are not affected by this issue. |
| Early versions of Operator-SDK provided an insecure method to allow operator containers to run in environments that used a random UID. Operator-SDK before 0.15.2 provided a script, user_setup, which modifies the permissions of the /etc/passwd file to 664 during build time. Developers who used Operator-SDK before 0.15.2 to scaffold their operator may still be impacted by this if the insecure user_setup script is still being used to build new container images.
In affected images, the /etc/passwd file is created during build time with group-writable permissions and a group ownership of root (gid=0). An attacker who can execute commands within an affected container, even as a non-root user, may be able to leverage their membership in the root group to modify the /etc/passwd file. This could allow the attacker to add a new user with any arbitrary UID, including UID 0, leading to full root privileges within the container. |
| Issue summary: A TLS 1.3 connection using certificate compression can be
forced to allocate a large buffer before decompression without checking
against the configured certificate size limit.
Impact summary: An attacker can cause per-connection memory allocations of
up to approximately 22 MiB and extra CPU work, potentially leading to
service degradation or resource exhaustion (Denial of Service).
In affected configurations, the peer-supplied uncompressed certificate
length from a CompressedCertificate message is used to grow a heap buffer
prior to decompression. This length is not bounded by the max_cert_list
setting, which otherwise constrains certificate message sizes. An attacker
can exploit this to cause large per-connection allocations followed by
handshake failure. No memory corruption or information disclosure occurs.
This issue only affects builds where TLS 1.3 certificate compression is
compiled in (i.e., not OPENSSL_NO_COMP_ALG) and at least one compression
algorithm (brotli, zlib, or zstd) is available, and where the compression
extension is negotiated. Both clients receiving a server CompressedCertificate
and servers in mutual TLS scenarios receiving a client CompressedCertificate
are affected. Servers that do not request client certificates are not
vulnerable to client-initiated attacks.
Users can mitigate this issue by setting SSL_OP_NO_RX_CERTIFICATE_COMPRESSION
to disable receiving compressed certificates.
The FIPS modules in 3.6, 3.5, 3.4 and 3.3 are not affected by this issue,
as the TLS implementation is outside the OpenSSL FIPS module boundary.
OpenSSL 3.6, 3.5, 3.4 and 3.3 are vulnerable to this issue.
OpenSSL 3.0, 1.1.1 and 1.0.2 are not affected by this issue. |
| Issue summary: Writing large, newline-free data into a BIO chain using the
line-buffering filter where the next BIO performs short writes can trigger
a heap-based out-of-bounds write.
Impact summary: This out-of-bounds write can cause memory corruption which
typically results in a crash, leading to Denial of Service for an application.
The line-buffering BIO filter (BIO_f_linebuffer) is not used by default in
TLS/SSL data paths. In OpenSSL command-line applications, it is typically
only pushed onto stdout/stderr on VMS systems. Third-party applications that
explicitly use this filter with a BIO chain that can short-write and that
write large, newline-free data influenced by an attacker would be affected.
However, the circumstances where this could happen are unlikely to be under
attacker control, and BIO_f_linebuffer is unlikely to be handling non-curated
data controlled by an attacker. For that reason the issue was assessed as
Low severity.
The FIPS modules in 3.6, 3.5, 3.4, 3.3 and 3.0 are not affected by this issue,
as the BIO implementation is outside the OpenSSL FIPS module boundary.
OpenSSL 3.6, 3.5, 3.4, 3.3, 3.0, 1.1.1 and 1.0.2 are vulnerable to this issue. |
| SolarWinds Web Help Desk was found to be susceptible to an authentication bypass vulnerability that if exploited, would allow a malicious actor to execute actions and methods that should be protected by authentication. |
| ZwiiCMS versions prior to 13.7.00 contain a denial-of-service vulnerability in multiple administrative endpoints due to improper authorization checks combined with flawed resource state management. When an authenticated low-privilege user requests an administrative page, the application returns "404 Not Found" as expected, but incorrectly acquires and associates a temporary lock on the targeted resource with the attacker session prior to authorization. This lock prevents other users, including administrators, from accessing the affected functionality until the attacker navigates away or the session is terminated. |
| Issue summary: When using the low-level OCB API directly with AES-NI or<br>other hardware-accelerated code paths, inputs whose length is not a multiple<br>of 16 bytes can leave the final partial block unencrypted and unauthenticated.<br><br>Impact summary: The trailing 1-15 bytes of a message may be exposed in<br>cleartext on encryption and are not covered by the authentication tag,<br>allowing an attacker to read or tamper with those bytes without detection.<br><br>The low-level OCB encrypt and decrypt routines in the hardware-accelerated<br>stream path process full 16-byte blocks but do not advance the input/output<br>pointers. The subsequent tail-handling code then operates on the original<br>base pointers, effectively reprocessing the beginning of the buffer while<br>leaving the actual trailing bytes unprocessed. The authentication checksum<br>also excludes the true tail bytes.<br><br>However, typical OpenSSL consumers using EVP are not affected because the<br>higher-level EVP and provider OCB implementations split inputs so that full<br>blocks and trailing partial blocks are processed in separate calls, avoiding<br>the problematic code path. Additionally, TLS does not use OCB ciphersuites.<br>The vulnerability only affects applications that call the low-level<br>CRYPTO_ocb128_encrypt() or CRYPTO_ocb128_decrypt() functions directly with<br>non-block-aligned lengths in a single call on hardware-accelerated builds.<br>For these reasons the issue was assessed as Low severity.<br><br>The FIPS modules in 3.6, 3.5, 3.4, 3.3, 3.2, 3.1 and 3.0 are not affected<br>by this issue, as OCB mode is not a FIPS-approved algorithm.<br><br>OpenSSL 3.6, 3.5, 3.4, 3.3, 3.0 and 1.1.1 are vulnerable to this issue.<br><br>OpenSSL 1.0.2 is not affected by this issue. |
| SolarWinds Web Help Desk was found to be susceptible to an untrusted data deserialization vulnerability that could lead to remote code execution, which would allow an attacker to run commands on the host machine. This could be exploited without authentication. |