| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Early versions of Operator-SDK provided an insecure method to allow operator containers to run in environments that used a random UID. Operator-SDK before 0.15.2 provided a script, user_setup, which modifies the permissions of the /etc/passwd file to 664 during build time. Developers who used Operator-SDK before 0.15.2 to scaffold their operator may still be impacted by this if the insecure user_setup script is still being used to build new container images.
In affected images, the /etc/passwd file is created during build time with group-writable permissions and a group ownership of root (gid=0). An attacker who can execute commands within an affected container, even as a non-root user, may be able to leverage their membership in the root group to modify the /etc/passwd file. This could allow the attacker to add a new user with any arbitrary UID, including UID 0, leading to full root privileges within the container. |
| The Element Pack Addons for Elementor plugin for WordPress is vulnerable to arbitrary file reads in all versions up to, and including, 8.3.17 via the SVG widget and a lack of sufficient file validation in the 'render_svg' function. This makes it possible for authenticated attackers, with contributor-level access and above, to read the contents of arbitrary files on the server, which can contain sensitive information. |
| The Ecwid by Lightspeed Ecommerce Shopping Cart plugin for WordPress is vulnerable to Privilege Escalation in all versions up to, and including, 7.0.7. This is due to a missing capability check in the 'save_custom_user_profile_fields' function. This makes it possible for authenticated attackers, with minimal permissions such as a subscriber, to supply the 'ec_store_admin_access' parameter during a profile update and gain store manager access to the site. |
| The Spam protection, Anti-Spam, FireWall by CleanTalk plugin for WordPress is vulnerable to unauthorized Arbitrary Plugin Installation due to an authorization bypass via reverse DNS (PTR record) spoofing on the 'checkWithoutToken' function in all versions up to, and including, 6.71. This makes it possible for unauthenticated attackers to install and activate arbitrary plugins which can be leveraged to achieve remote code execution if another vulnerable plugin is installed and activated. Note: This is only exploitable on sites with an invalid API key. |
| DO NOT USE THIS CANDIDATE NUMBER. ConsultIDs: none. Reason: This candidate was withdrawn by its CNA. Further investigation showed that it was not a security issue. Notes: none. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Fix PTP NULL pointer dereference during VSI rebuild
Fix race condition where PTP periodic work runs while VSI is being
rebuilt, accessing NULL vsi->rx_rings.
The sequence was:
1. ice_ptp_prepare_for_reset() cancels PTP work
2. ice_ptp_rebuild() immediately queues PTP work
3. VSI rebuild happens AFTER ice_ptp_rebuild()
4. PTP work runs and accesses NULL vsi->rx_rings
Fix: Keep PTP work cancelled during rebuild, only queue it after
VSI rebuild completes in ice_rebuild().
Added ice_ptp_queue_work() helper function to encapsulate the logic
for queuing PTP work, ensuring it's only queued when PTP is supported
and the state is ICE_PTP_READY.
Error log:
[ 121.392544] ice 0000:60:00.1: PTP reset successful
[ 121.392692] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 121.392712] #PF: supervisor read access in kernel mode
[ 121.392720] #PF: error_code(0x0000) - not-present page
[ 121.392727] PGD 0
[ 121.392734] Oops: Oops: 0000 [#1] SMP NOPTI
[ 121.392746] CPU: 8 UID: 0 PID: 1005 Comm: ice-ptp-0000:60 Tainted: G S 6.19.0-rc6+ #4 PREEMPT(voluntary)
[ 121.392761] Tainted: [S]=CPU_OUT_OF_SPEC
[ 121.392773] RIP: 0010:ice_ptp_update_cached_phctime+0xbf/0x150 [ice]
[ 121.393042] Call Trace:
[ 121.393047] <TASK>
[ 121.393055] ice_ptp_periodic_work+0x69/0x180 [ice]
[ 121.393202] kthread_worker_fn+0xa2/0x260
[ 121.393216] ? __pfx_ice_ptp_periodic_work+0x10/0x10 [ice]
[ 121.393359] ? __pfx_kthread_worker_fn+0x10/0x10
[ 121.393371] kthread+0x10d/0x230
[ 121.393382] ? __pfx_kthread+0x10/0x10
[ 121.393393] ret_from_fork+0x273/0x2b0
[ 121.393407] ? __pfx_kthread+0x10/0x10
[ 121.393417] ret_from_fork_asm+0x1a/0x30
[ 121.393432] </TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
macvlan: fix error recovery in macvlan_common_newlink()
valis provided a nice repro to crash the kernel:
ip link add p1 type veth peer p2
ip link set address 00:00:00:00:00:20 dev p1
ip link set up dev p1
ip link set up dev p2
ip link add mv0 link p2 type macvlan mode source
ip link add invalid% link p2 type macvlan mode source macaddr add 00:00:00:00:00:20
ping -c1 -I p1 1.2.3.4
He also gave a very detailed analysis:
<quote valis>
The issue is triggered when a new macvlan link is created with
MACVLAN_MODE_SOURCE mode and MACVLAN_MACADDR_ADD (or
MACVLAN_MACADDR_SET) parameter, lower device already has a macvlan
port and register_netdevice() called from macvlan_common_newlink()
fails (e.g. because of the invalid link name).
In this case macvlan_hash_add_source is called from
macvlan_change_sources() / macvlan_common_newlink():
This adds a reference to vlan to the port's vlan_source_hash using
macvlan_source_entry.
vlan is a pointer to the priv data of the link that is being created.
When register_netdevice() fails, the error is returned from
macvlan_newlink() to rtnl_newlink_create():
if (ops->newlink)
err = ops->newlink(dev, ¶ms, extack);
else
err = register_netdevice(dev);
if (err < 0) {
free_netdev(dev);
goto out;
}
and free_netdev() is called, causing a kvfree() on the struct
net_device that is still referenced in the source entry attached to
the lower device's macvlan port.
Now all packets sent on the macvlan port with a matching source mac
address will trigger a use-after-free in macvlan_forward_source().
</quote valis>
With all that, my fix is to make sure we call macvlan_flush_sources()
regardless of @create value whenever "goto destroy_macvlan_port;"
path is taken.
Many thanks to valis for following up on this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Prevent excessive number of frames
In this case, the user constructed the parameters with maxpacksize 40
for rate 22050 / pps 1000, and packsize[0] 22 packsize[1] 23. The buffer
size for each data URB is maxpacksize * packets, which in this example
is 40 * 6 = 240; When the user performs a write operation to send audio
data into the ALSA PCM playback stream, the calculated number of frames
is packsize[0] * packets = 264, which exceeds the allocated URB buffer
size, triggering the out-of-bounds (OOB) issue reported by syzbot [1].
Added a check for the number of single data URB frames when calculating
the number of frames to prevent [1].
[1]
BUG: KASAN: slab-out-of-bounds in copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487
Write of size 264 at addr ffff88804337e800 by task syz.0.17/5506
Call Trace:
copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487
prepare_playback_urb+0x953/0x13d0 sound/usb/pcm.c:1611
prepare_outbound_urb+0x377/0xc50 sound/usb/endpoint.c:333 |
| In the Linux kernel, the following vulnerability has been resolved:
spi: tegra210-quad: Protect curr_xfer check in IRQ handler
Now that all other accesses to curr_xfer are done under the lock,
protect the curr_xfer NULL check in tegra_qspi_isr_thread() with the
spinlock. Without this protection, the following race can occur:
CPU0 (ISR thread) CPU1 (timeout path)
---------------- -------------------
if (!tqspi->curr_xfer)
// sees non-NULL
spin_lock()
tqspi->curr_xfer = NULL
spin_unlock()
handle_*_xfer()
spin_lock()
t = tqspi->curr_xfer // NULL!
... t->len ... // NULL dereference!
With this patch, all curr_xfer accesses are now properly synchronized.
Although all accesses to curr_xfer are done under the lock, in
tegra_qspi_isr_thread() it checks for NULL, releases the lock and
reacquires it later in handle_cpu_based_xfer()/handle_dma_based_xfer().
There is a potential for an update in between, which could cause a NULL
pointer dereference.
To handle this, add a NULL check inside the handlers after acquiring
the lock. This ensures that if the timeout path has already cleared
curr_xfer, the handler will safely return without dereferencing the
NULL pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
dpaa2-switch: prevent ZERO_SIZE_PTR dereference when num_ifs is zero
The driver allocates arrays for ports, FDBs, and filter blocks using
kcalloc() with ethsw->sw_attr.num_ifs as the element count. When the
device reports zero interfaces (either due to hardware configuration
or firmware issues), kcalloc(0, ...) returns ZERO_SIZE_PTR (0x10)
instead of NULL.
Later in dpaa2_switch_probe(), the NAPI initialization unconditionally
accesses ethsw->ports[0]->netdev, which attempts to dereference
ZERO_SIZE_PTR (address 0x10), resulting in a kernel panic.
Add a check to ensure num_ifs is greater than zero after retrieving
device attributes. This prevents the zero-sized allocations and
subsequent invalid pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
smb/client: fix memory leak in smb2_open_file()
Reproducer:
1. server: directories are exported read-only
2. client: mount -t cifs //${server_ip}/export /mnt
3. client: dd if=/dev/zero of=/mnt/file bs=512 count=1000 oflag=direct
4. client: umount /mnt
5. client: sleep 1
6. client: modprobe -r cifs
The error message is as follows:
=============================================================================
BUG cifs_small_rq (Not tainted): Objects remaining on __kmem_cache_shutdown()
-----------------------------------------------------------------------------
Object 0x00000000d47521be @offset=14336
...
WARNING: mm/slub.c:1251 at __kmem_cache_shutdown+0x34e/0x440, CPU#0: modprobe/1577
...
Call Trace:
<TASK>
kmem_cache_destroy+0x94/0x190
cifs_destroy_request_bufs+0x3e/0x50 [cifs]
cleanup_module+0x4e/0x540 [cifs]
__se_sys_delete_module+0x278/0x400
__x64_sys_delete_module+0x5f/0x70
x64_sys_call+0x2299/0x2ff0
do_syscall_64+0x89/0x350
entry_SYSCALL_64_after_hwframe+0x76/0x7e
...
kmem_cache_destroy cifs_small_rq: Slab cache still has objects when called from cifs_destroy_request_bufs+0x3e/0x50 [cifs]
WARNING: mm/slab_common.c:532 at kmem_cache_destroy+0x16b/0x190, CPU#0: modprobe/1577 |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: cls_u32: use skb_header_pointer_careful()
skb_header_pointer() does not fully validate negative @offset values.
Use skb_header_pointer_careful() instead.
GangMin Kim provided a report and a repro fooling u32_classify():
BUG: KASAN: slab-out-of-bounds in u32_classify+0x1180/0x11b0
net/sched/cls_u32.c:221 |
| In the Linux kernel, the following vulnerability has been resolved:
net: cpsw_new: Execute ndo_set_rx_mode callback in a work queue
Commit 1767bb2d47b7 ("ipv6: mcast: Don't hold RTNL for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP.") removed the RTNL lock for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP operations. However, this
change triggered the following call trace on my BeagleBone Black board:
WARNING: net/8021q/vlan_core.c:236 at vlan_for_each+0x120/0x124, CPU#0: rpcbind/496
RTNL: assertion failed at net/8021q/vlan_core.c (236)
Modules linked in:
CPU: 0 UID: 997 PID: 496 Comm: rpcbind Not tainted 6.19.0-rc6-next-20260122-yocto-standard+ #8 PREEMPT
Hardware name: Generic AM33XX (Flattened Device Tree)
Call trace:
unwind_backtrace from show_stack+0x28/0x2c
show_stack from dump_stack_lvl+0x30/0x38
dump_stack_lvl from __warn+0xb8/0x11c
__warn from warn_slowpath_fmt+0x130/0x194
warn_slowpath_fmt from vlan_for_each+0x120/0x124
vlan_for_each from cpsw_add_mc_addr+0x54/0xd8
cpsw_add_mc_addr from __hw_addr_ref_sync_dev+0xc4/0xec
__hw_addr_ref_sync_dev from __dev_mc_add+0x78/0x88
__dev_mc_add from igmp6_group_added+0x84/0xec
igmp6_group_added from __ipv6_dev_mc_inc+0x1fc/0x2f0
__ipv6_dev_mc_inc from __ipv6_sock_mc_join+0x124/0x1b4
__ipv6_sock_mc_join from do_ipv6_setsockopt+0x84c/0x1168
do_ipv6_setsockopt from ipv6_setsockopt+0x88/0xc8
ipv6_setsockopt from do_sock_setsockopt+0xe8/0x19c
do_sock_setsockopt from __sys_setsockopt+0x84/0xac
__sys_setsockopt from ret_fast_syscall+0x0/0x5
This trace occurs because vlan_for_each() is called within
cpsw_ndo_set_rx_mode(), which expects the RTNL lock to be held.
Since modifying vlan_for_each() to operate without the RTNL lock is not
straightforward, and because ndo_set_rx_mode() is invoked both with and
without the RTNL lock across different code paths, simply adding
rtnl_lock() in cpsw_ndo_set_rx_mode() is not a viable solution.
To resolve this issue, we opt to execute the actual processing within
a work queue, following the approach used by the icssg-prueth driver. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: tegra210-quad: Protect curr_xfer in tegra_qspi_combined_seq_xfer
The curr_xfer field is read by the IRQ handler without holding the lock
to check if a transfer is in progress. When clearing curr_xfer in the
combined sequence transfer loop, protect it with the spinlock to prevent
a race with the interrupt handler.
Protect the curr_xfer clearing at the exit path of
tegra_qspi_combined_seq_xfer() with the spinlock to prevent a race
with the interrupt handler that reads this field.
Without this protection, the IRQ handler could read a partially updated
curr_xfer value, leading to NULL pointer dereference or use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix oops due to invalid pointer for kfree() in parse_longname()
This fixes a kernel oops when reading ceph snapshot directories (.snap),
for example by simply running `ls /mnt/my_ceph/.snap`.
The variable str is guarded by __free(kfree), but advanced by one for
skipping the initial '_' in snapshot names. Thus, kfree() is called
with an invalid pointer. This patch removes the need for advancing the
pointer so kfree() is called with correct memory pointer.
Steps to reproduce:
1. Create snapshots on a cephfs volume (I've 63 snaps in my testcase)
2. Add cephfs mount to fstab
$ echo "samba-fileserver@.files=/volumes/datapool/stuff/3461082b-ecc9-4e82-8549-3fd2590d3fb6 /mnt/test/stuff ceph acl,noatime,_netdev 0 0" >> /etc/fstab
3. Reboot the system
$ systemctl reboot
4. Check if it's really mounted
$ mount | grep stuff
5. List snapshots (expected 63 snapshots on my system)
$ ls /mnt/test/stuff/.snap
Now ls hangs forever and the kernel log shows the oops. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix ECMP sibling count mismatch when clearing RTF_ADDRCONF
syzbot reported a kernel BUG in fib6_add_rt2node() when adding an IPv6
route. [0]
Commit f72514b3c569 ("ipv6: clear RA flags when adding a static
route") introduced logic to clear RTF_ADDRCONF from existing routes
when a static route with the same nexthop is added. However, this
causes a problem when the existing route has a gateway.
When RTF_ADDRCONF is cleared from a route that has a gateway, that
route becomes eligible for ECMP, i.e. rt6_qualify_for_ecmp() returns
true. The issue is that this route was never added to the
fib6_siblings list.
This leads to a mismatch between the following counts:
- The sibling count computed by iterating fib6_next chain, which
includes the newly ECMP-eligible route
- The actual siblings in fib6_siblings list, which does not include
that route
When a subsequent ECMP route is added, fib6_add_rt2node() hits
BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings) because the
counts don't match.
Fix this by only clearing RTF_ADDRCONF when the existing route does
not have a gateway. Routes without a gateway cannot qualify for ECMP
anyway (rt6_qualify_for_ecmp() requires fib_nh_gw_family), so clearing
RTF_ADDRCONF on them is safe and matches the original intent of the
commit.
[0]:
kernel BUG at net/ipv6/ip6_fib.c:1217!
Oops: invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 0 UID: 0 PID: 6010 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
RIP: 0010:fib6_add_rt2node+0x3433/0x3470 net/ipv6/ip6_fib.c:1217
[...]
Call Trace:
<TASK>
fib6_add+0x8da/0x18a0 net/ipv6/ip6_fib.c:1532
__ip6_ins_rt net/ipv6/route.c:1351 [inline]
ip6_route_add+0xde/0x1b0 net/ipv6/route.c:3946
ipv6_route_ioctl+0x35c/0x480 net/ipv6/route.c:4571
inet6_ioctl+0x219/0x280 net/ipv6/af_inet6.c:577
sock_do_ioctl+0xdc/0x300 net/socket.c:1245
sock_ioctl+0x576/0x790 net/socket.c:1366
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:583
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
procfs: avoid fetching build ID while holding VMA lock
Fix PROCMAP_QUERY to fetch optional build ID only after dropping mmap_lock
or per-VMA lock, whichever was used to lock VMA under question, to avoid
deadlock reported by syzbot:
-> #1 (&mm->mmap_lock){++++}-{4:4}:
__might_fault+0xed/0x170
_copy_to_iter+0x118/0x1720
copy_page_to_iter+0x12d/0x1e0
filemap_read+0x720/0x10a0
blkdev_read_iter+0x2b5/0x4e0
vfs_read+0x7f4/0xae0
ksys_read+0x12a/0x250
do_syscall_64+0xcb/0xf80
entry_SYSCALL_64_after_hwframe+0x77/0x7f
-> #0 (&sb->s_type->i_mutex_key#8){++++}-{4:4}:
__lock_acquire+0x1509/0x26d0
lock_acquire+0x185/0x340
down_read+0x98/0x490
blkdev_read_iter+0x2a7/0x4e0
__kernel_read+0x39a/0xa90
freader_fetch+0x1d5/0xa80
__build_id_parse.isra.0+0xea/0x6a0
do_procmap_query+0xd75/0x1050
procfs_procmap_ioctl+0x7a/0xb0
__x64_sys_ioctl+0x18e/0x210
do_syscall_64+0xcb/0xf80
entry_SYSCALL_64_after_hwframe+0x77/0x7f
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
rlock(&mm->mmap_lock);
lock(&sb->s_type->i_mutex_key#8);
lock(&mm->mmap_lock);
rlock(&sb->s_type->i_mutex_key#8);
*** DEADLOCK ***
This seems to be exacerbated (as we haven't seen these syzbot reports
before that) by the recent:
777a8560fd29 ("lib/buildid: use __kernel_read() for sleepable context")
To make this safe, we need to grab file refcount while VMA is still locked, but
other than that everything is pretty straightforward. Internal build_id_parse()
API assumes VMA is passed, but it only needs the underlying file reference, so
just add another variant build_id_parse_file() that expects file passed
directly.
[akpm@linux-foundation.org: fix up kerneldoc] |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: Don't clobber irqfd routing type when deassigning irqfd
When deassigning a KVM_IRQFD, don't clobber the irqfd's copy of the IRQ's
routing entry as doing so breaks kvm_arch_irq_bypass_del_producer() on x86
and arm64, which explicitly look for KVM_IRQ_ROUTING_MSI. Instead, to
handle a concurrent routing update, verify that the irqfd is still active
before consuming the routing information. As evidenced by the x86 and
arm64 bugs, and another bug in kvm_arch_update_irqfd_routing() (see below),
clobbering the entry type without notifying arch code is surprising and
error prone.
As a bonus, checking that the irqfd is active provides a convenient
location for documenting _why_ KVM must not consume the routing entry for
an irqfd that is in the process of being deassigned: once the irqfd is
deleted from the list (which happens *before* the eventfd is detached), it
will no longer receive updates via kvm_irq_routing_update(), and so KVM
could deliver an event using stale routing information (relative to
KVM_SET_GSI_ROUTING returning to userspace).
As an even better bonus, explicitly checking for the irqfd being active
fixes a similar bug to the one the clobbering is trying to prevent: if an
irqfd is deactivated, and then its routing is changed,
kvm_irq_routing_update() won't invoke kvm_arch_update_irqfd_routing()
(because the irqfd isn't in the list). And so if the irqfd is in bypass
mode, IRQs will continue to be posted using the old routing information.
As for kvm_arch_irq_bypass_del_producer(), clobbering the routing type
results in KVM incorrectly keeping the IRQ in bypass mode, which is
especially problematic on AMD as KVM tracks IRQs that are being posted to
a vCPU in a list whose lifetime is tied to the irqfd.
Without the help of KASAN to detect use-after-free, the most common
sympton on AMD is a NULL pointer deref in amd_iommu_update_ga() due to
the memory for irqfd structure being re-allocated and zeroed, resulting
in irqfd->irq_bypass_data being NULL when read by
avic_update_iommu_vcpu_affinity():
BUG: kernel NULL pointer dereference, address: 0000000000000018
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 40cf2b9067 P4D 40cf2b9067 PUD 408362a067 PMD 0
Oops: Oops: 0000 [#1] SMP
CPU: 6 UID: 0 PID: 40383 Comm: vfio_irq_test
Tainted: G U W O 6.19.0-smp--5dddc257e6b2-irqfd #31 NONE
Tainted: [U]=USER, [W]=WARN, [O]=OOT_MODULE
Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 34.78.2-0 09/05/2025
RIP: 0010:amd_iommu_update_ga+0x19/0xe0
Call Trace:
<TASK>
avic_update_iommu_vcpu_affinity+0x3d/0x90 [kvm_amd]
__avic_vcpu_load+0xf4/0x130 [kvm_amd]
kvm_arch_vcpu_load+0x89/0x210 [kvm]
vcpu_load+0x30/0x40 [kvm]
kvm_arch_vcpu_ioctl_run+0x45/0x620 [kvm]
kvm_vcpu_ioctl+0x571/0x6a0 [kvm]
__se_sys_ioctl+0x6d/0xb0
do_syscall_64+0x6f/0x9d0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x46893b
</TASK>
---[ end trace 0000000000000000 ]---
If AVIC is inhibited when the irfd is deassigned, the bug will manifest as
list corruption, e.g. on the next irqfd assignment.
list_add corruption. next->prev should be prev (ffff8d474d5cd588),
but was 0000000000000000. (next=ffff8d8658f86530).
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:31!
Oops: invalid opcode: 0000 [#1] SMP
CPU: 128 UID: 0 PID: 80818 Comm: vfio_irq_test
Tainted: G U W O 6.19.0-smp--f19dc4d680ba-irqfd #28 NONE
Tainted: [U]=USER, [W]=WARN, [O]=OOT_MODULE
Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 34.78.2-0 09/05/2025
RIP: 0010:__list_add_valid_or_report+0x97/0xc0
Call Trace:
<TASK>
avic_pi_update_irte+0x28e/0x2b0 [kvm_amd]
kvm_pi_update_irte+0xbf/0x190 [kvm]
kvm_arch_irq_bypass_add_producer+0x72/0x90 [kvm]
irq_bypass_register_consumer+0xcd/0x170 [irqbypa
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: imx: preserve error state in block data length handler
When a block read returns an invalid length, zero or >I2C_SMBUS_BLOCK_MAX,
the length handler sets the state to IMX_I2C_STATE_FAILED. However,
i2c_imx_master_isr() unconditionally overwrites this with
IMX_I2C_STATE_READ_CONTINUE, causing an endless read loop that overruns
buffers and crashes the system.
Guard the state transition to preserve error states set by the length
handler. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: Intel-thc-hid: Intel-thc: Add safety check for reading DMA buffer
Add DMA buffer readiness check before reading DMA buffer to avoid
unexpected NULL pointer accessing. |