| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix dma_free_coherent() pointer
dma_alloc_coherent() allocates a DMA mapped buffer and stores the
addresses in XXX_unaligned fields. Those should be reused when freeing
the buffer rather than the aligned addresses. |
| In the Linux kernel, the following vulnerability has been resolved:
efivarfs: fix error propagation in efivar_entry_get()
efivar_entry_get() always returns success even if the underlying
__efivar_entry_get() fails, masking errors.
This may result in uninitialized heap memory being copied to userspace
in the efivarfs_file_read() path.
Fix it by returning the error from __efivar_entry_get(). |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: nci: Fix race between rfkill and nci_unregister_device().
syzbot reported the splat below [0] without a repro.
It indicates that struct nci_dev.cmd_wq had been destroyed before
nci_close_device() was called via rfkill.
nci_dev.cmd_wq is only destroyed in nci_unregister_device(), which
(I think) was called from virtual_ncidev_close() when syzbot close()d
an fd of virtual_ncidev.
The problem is that nci_unregister_device() destroys nci_dev.cmd_wq
first and then calls nfc_unregister_device(), which removes the
device from rfkill by rfkill_unregister().
So, the device is still visible via rfkill even after nci_dev.cmd_wq
is destroyed.
Let's unregister the device from rfkill first in nci_unregister_device().
Note that we cannot call nfc_unregister_device() before
nci_close_device() because
1) nfc_unregister_device() calls device_del() which frees
all memory allocated by devm_kzalloc() and linked to
ndev->conn_info_list
2) nci_rx_work() could try to queue nci_conn_info to
ndev->conn_info_list which could be leaked
Thus, nfc_unregister_device() is split into two functions so we
can remove rfkill interfaces only before nci_close_device().
[0]:
DEBUG_LOCKS_WARN_ON(1)
WARNING: kernel/locking/lockdep.c:238 at hlock_class kernel/locking/lockdep.c:238 [inline], CPU#0: syz.0.8675/6349
WARNING: kernel/locking/lockdep.c:238 at check_wait_context kernel/locking/lockdep.c:4854 [inline], CPU#0: syz.0.8675/6349
WARNING: kernel/locking/lockdep.c:238 at __lock_acquire+0x39d/0x2cf0 kernel/locking/lockdep.c:5187, CPU#0: syz.0.8675/6349
Modules linked in:
CPU: 0 UID: 0 PID: 6349 Comm: syz.0.8675 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/13/2026
RIP: 0010:hlock_class kernel/locking/lockdep.c:238 [inline]
RIP: 0010:check_wait_context kernel/locking/lockdep.c:4854 [inline]
RIP: 0010:__lock_acquire+0x3a4/0x2cf0 kernel/locking/lockdep.c:5187
Code: 18 00 4c 8b 74 24 08 75 27 90 e8 17 f2 fc 02 85 c0 74 1c 83 3d 50 e0 4e 0e 00 75 13 48 8d 3d 43 f7 51 0e 48 c7 c6 8b 3a de 8d <67> 48 0f b9 3a 90 31 c0 0f b6 98 c4 00 00 00 41 8b 45 20 25 ff 1f
RSP: 0018:ffffc9000c767680 EFLAGS: 00010046
RAX: 0000000000000001 RBX: 0000000000040000 RCX: 0000000000080000
RDX: ffffc90013080000 RSI: ffffffff8dde3a8b RDI: ffffffff8ff24ca0
RBP: 0000000000000003 R08: ffffffff8fef35a3 R09: 1ffffffff1fde6b4
R10: dffffc0000000000 R11: fffffbfff1fde6b5 R12: 00000000000012a2
R13: ffff888030338ba8 R14: ffff888030338000 R15: ffff888030338b30
FS: 00007fa5995f66c0(0000) GS:ffff8881256f8000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7e72f842d0 CR3: 00000000485a0000 CR4: 00000000003526f0
Call Trace:
<TASK>
lock_acquire+0x106/0x330 kernel/locking/lockdep.c:5868
touch_wq_lockdep_map+0xcb/0x180 kernel/workqueue.c:3940
__flush_workqueue+0x14b/0x14f0 kernel/workqueue.c:3982
nci_close_device+0x302/0x630 net/nfc/nci/core.c:567
nci_dev_down+0x3b/0x50 net/nfc/nci/core.c:639
nfc_dev_down+0x152/0x290 net/nfc/core.c:161
nfc_rfkill_set_block+0x2d/0x100 net/nfc/core.c:179
rfkill_set_block+0x1d2/0x440 net/rfkill/core.c:346
rfkill_fop_write+0x461/0x5a0 net/rfkill/core.c:1301
vfs_write+0x29a/0xb90 fs/read_write.c:684
ksys_write+0x150/0x270 fs/read_write.c:738
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xe2/0xf80 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7fa59b39acb9
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 e8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fa5995f6028 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 00007fa59b615fa0 RCX: 00007fa59b39acb9
RDX: 0000000000000008 RSI: 0000200000000080 RDI: 0000000000000007
RBP: 00007fa59b408bf7 R08:
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
flex_proportions: make fprop_new_period() hardirq safe
Bernd has reported a lockdep splat from flexible proportions code that is
essentially complaining about the following race:
<timer fires>
run_timer_softirq - we are in softirq context
call_timer_fn
writeout_period
fprop_new_period
write_seqcount_begin(&p->sequence);
<hardirq is raised>
...
blk_mq_end_request()
blk_update_request()
ext4_end_bio()
folio_end_writeback()
__wb_writeout_add()
__fprop_add_percpu_max()
if (unlikely(max_frac < FPROP_FRAC_BASE)) {
fprop_fraction_percpu()
seq = read_seqcount_begin(&p->sequence);
- sees odd sequence so loops indefinitely
Note that a deadlock like this is only possible if the bdi has configured
maximum fraction of writeout throughput which is very rare in general but
frequent for example for FUSE bdis. To fix this problem we have to make
sure write section of the sequence counter is irqsafe. |
| In the Linux kernel, the following vulnerability has been resolved:
mISDN: annotate data-race around dev->work
dev->work can re read locklessly in mISDN_read()
and mISDN_poll(). Add READ_ONCE()/WRITE_ONCE() annotations.
BUG: KCSAN: data-race in mISDN_ioctl / mISDN_read
write to 0xffff88812d848280 of 4 bytes by task 10864 on cpu 1:
misdn_add_timer drivers/isdn/mISDN/timerdev.c:175 [inline]
mISDN_ioctl+0x2fb/0x550 drivers/isdn/mISDN/timerdev.c:233
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
__se_sys_ioctl+0xce/0x140 fs/ioctl.c:583
__x64_sys_ioctl+0x43/0x50 fs/ioctl.c:583
x64_sys_call+0x14b0/0x3000 arch/x86/include/generated/asm/syscalls_64.h:17
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd8/0x2c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
read to 0xffff88812d848280 of 4 bytes by task 10857 on cpu 0:
mISDN_read+0x1f2/0x470 drivers/isdn/mISDN/timerdev.c:112
do_loop_readv_writev fs/read_write.c:847 [inline]
vfs_readv+0x3fb/0x690 fs/read_write.c:1020
do_readv+0xe7/0x210 fs/read_write.c:1080
__do_sys_readv fs/read_write.c:1165 [inline]
__se_sys_readv fs/read_write.c:1162 [inline]
__x64_sys_readv+0x45/0x50 fs/read_write.c:1162
x64_sys_call+0x2831/0x3000 arch/x86/include/generated/asm/syscalls_64.h:20
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xd8/0x2c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
value changed: 0x00000000 -> 0x00000001 |
| In the Linux kernel, the following vulnerability has been resolved:
drm: Do not allow userspace to trigger kernel warnings in drm_gem_change_handle_ioctl()
Since GEM bo handles are u32 in the uapi and the internal implementation
uses idr_alloc() which uses int ranges, passing a new handle larger than
INT_MAX trivially triggers a kernel warning:
idr_alloc():
...
if (WARN_ON_ONCE(start < 0))
return -EINVAL;
...
Fix it by rejecting new handles above INT_MAX and at the same time make
the end limit calculation more obvious by moving into int domain. |
| The MP3 Audio Player – Music Player, Podcast Player & Radio by Sonaar plugin for WordPress is vulnerable to Server-Side Request Forgery in versions 5.3 to 5.10 via the 'load_lyrics_ajax_callback' function. This makes it possible for authenticated attackers, with author level access and above, to make web requests to arbitrary locations originating from the web application and can be used to query and modify information from internal services. |
| The Modula Image Gallery – Photo Grid & Video Gallery plugin for WordPress is vulnerable to authorization bypass in all versions up to, and including, 2.13.6. This is due to the plugin not properly verifying that a user is authorized to modify specific posts before updating them via the REST API. This makes it possible for authenticated attackers, with contributor level access and above, to update the title, excerpt, and content of arbitrary posts by passing post IDs in the modulaImages field when editing a gallery. |
| The Mail Mint plugin for WordPress is vulnerable to blind SQL Injection via the 'forms', 'automation', 'email/templates', and 'contacts/import/tutorlms/map' API endpoints in all versions up to, and including, 1.19.2 . This is due to insufficient escaping on the user supplied 'order-by', 'order-type', and 'selectedCourses' parameters and lack of sufficient preparation on the existing SQL queries. This makes it possible for authenticated attackers, with administrator level access and above, to append additional SQL queries into already existing queries. |
| The MailChimp Campaigns plugin for WordPress is vulnerable to Missing Authorization in all versions up to, and including, 3.2.4. This is due to missing capability checks on the `mailchimp_campaigns_manager_disconnect_app` function that is hooked to the AJAX action of the same name. This makes it possible for authenticated attackers, with Subscriber-level access and above, to disconnect the site from its MailChimp synchronization app, disrupting automated email campaigns and marketing integrations. |
| The Essential Addons for Elementor – Popular Elementor Templates & Widgets plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the plugin's Info Box widget in all versions up to, and including, 6.5.9 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The Geo Widget plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the URL path in all versions up to, and including, 1.0 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The QuestionPro Surveys plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'questionpro' shortcode in all versions up to, and including, 1.0 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The Simple Wp colorfull Accordion plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'title' parameter in the 'accordion' shortcode in all versions up to, and including, 1.0 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The Sphere Manager plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'width' parameter in the 'show_sphere_image' shortcode in all versions up to, and including, 1.0.2 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with Contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The UpMenu – Online ordering for restaurants plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'lang' attribute of the 'upmenu-menu' shortcode in all versions up to, and including, 3.1. This is due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The PixelYourSite PRO plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'pysTrafficSource' parameter and the 'pys_landing_page' parameter in all versions up to, and including, 12.4.0.2 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| The Scheduler Widget plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 0.1.6. This is due to the `scheduler_widget_ajax_save_event()` function lacking proper authorization checks and ownership verification when updating events. This makes it possible for authenticated attackers, with Subscriber-level access and above, to modify any event in the scheduler via the `id` parameter granted they have knowledge of the event ID. |
| The AMP Enhancer – Compatibility Layer for Official AMP Plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the AMP Custom CSS setting in all versions up to, and including, 1.0.49 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with Administrator-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. This only affects multi-site installations and installations where unfiltered_html has been disabled. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: add missing ice_deinit_hw() in devlink reinit path
devlink-reload results in ice_init_hw failed error, and then removing
the ice driver causes a NULL pointer dereference.
[ +0.102213] ice 0000:ca:00.0: ice_init_hw failed: -16
...
[ +0.000001] Call Trace:
[ +0.000003] <TASK>
[ +0.000006] ice_unload+0x8f/0x100 [ice]
[ +0.000081] ice_remove+0xba/0x300 [ice]
Commit 1390b8b3d2be ("ice: remove duplicate call to ice_deinit_hw() on
error paths") removed ice_deinit_hw() from ice_deinit_dev(). As a result
ice_devlink_reinit_down() no longer calls ice_deinit_hw(), but
ice_devlink_reinit_up() still calls ice_init_hw(). Since the control
queues are not uninitialized, ice_init_hw() fails with -EBUSY.
Add ice_deinit_hw() to ice_devlink_reinit_down() to correspond with
ice_init_hw() in ice_devlink_reinit_up(). |