| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| SimpleImportProduct Prestashop Module v6.2.9 was discovered to contain a SQL injection vulnerability via the key parameter at send.php. |
| In the module "Product Catalog (CSV, Excel) Import" (simpleimportproduct) <= 6.7.0 from MyPrestaModules for PrestaShop, a guest can upload files with extensions .php. |
| Cursor is a code editor built for programming with AI. Sandbox escape via writing .git configuration was possible in versions prior to 2.5. A malicious agent (ie prompt injection) could write to improperly protected .git settings, including git hooks, which may cause out-of-sandbox RCE next time they are triggered. No user interaction was required as Git executes these commands automatically. Fixed in version 2.5. |
| Edimax EW-7438RPn-v3 Mini 1.27 allows unauthenticated attackers to access the /wizard_reboot.asp page in unsetup mode, which discloses the Wi-Fi SSID and security key. Attackers can retrieve the wireless password by sending a GET request to this endpoint, exposing sensitive information without authentication. |
| In JetBrains PyCharm before 2025.3.2 a DOM-based XSS on Jupyter viewer page was possible |
| In JetBrains Hub before 2025.3.119807 authentication bypass allowing administrative actions was possible |
| A physical attack vulnerability exists in certain Moxa industrial computers using TPM-backed LUKS full-disk encryption on Moxa Industrial Linux 3, where the discrete TPM is connected to the CPU via an SPI bus. Exploitation requires invasive physical access, including opening the device and attaching external equipment to the SPI bus to capture TPM communications. If successful, the captured data may allow offline decryption of eMMC contents. This attack cannot be performed through brief or opportunistic physical access and requires extended physical access, possession of the device, appropriate equipment, and sufficient time for signal capture and analysis. Remote exploitation is not possible. |
| In the Linux kernel, the following vulnerability has been resolved:
net: wwan: t7xx: fix potential skb->frags overflow in RX path
When receiving data in the DPMAIF RX path,
the t7xx_dpmaif_set_frag_to_skb() function adds
page fragments to an skb without checking if the number of
fragments has exceeded MAX_SKB_FRAGS. This could lead to a buffer overflow
in skb_shinfo(skb)->frags[] array, corrupting adjacent memory and
potentially causing kernel crashes or other undefined behavior.
This issue was identified through static code analysis by comparing with a
similar vulnerability fixed in the mt76 driver commit b102f0c522cf ("mt76:
fix array overflow on receiving too many fragments for a packet").
The vulnerability could be triggered if the modem firmware sends packets
with excessive fragments. While under normal protocol conditions (MTU 3080
bytes, BAT buffer 3584 bytes),
a single packet should not require additional
fragments, the kernel should not blindly trust firmware behavior.
Malicious, buggy, or compromised firmware could potentially craft packets
with more fragments than the kernel expects.
Fix this by adding a bounds check before calling skb_add_rx_frag() to
ensure nr_frags does not exceed MAX_SKB_FRAGS.
The check must be performed before unmapping to avoid a page leak
and double DMA unmap during device teardown. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix NULL pointer dereference in amdgpu_gmc_filter_faults_remove
On APUs such as Raven and Renoir (GC 9.1.0, 9.2.2, 9.3.0), the ih1 and
ih2 interrupt ring buffers are not initialized. This is by design, as
these secondary IH rings are only available on discrete GPUs. See
vega10_ih_sw_init() which explicitly skips ih1/ih2 initialization when
AMD_IS_APU is set.
However, amdgpu_gmc_filter_faults_remove() unconditionally uses ih1 to
get the timestamp of the last interrupt entry. When retry faults are
enabled on APUs (noretry=0), this function is called from the SVM page
fault recovery path, resulting in a NULL pointer dereference when
amdgpu_ih_decode_iv_ts_helper() attempts to access ih->ring[].
The crash manifests as:
BUG: kernel NULL pointer dereference, address: 0000000000000004
RIP: 0010:amdgpu_ih_decode_iv_ts_helper+0x22/0x40 [amdgpu]
Call Trace:
amdgpu_gmc_filter_faults_remove+0x60/0x130 [amdgpu]
svm_range_restore_pages+0xae5/0x11c0 [amdgpu]
amdgpu_vm_handle_fault+0xc8/0x340 [amdgpu]
gmc_v9_0_process_interrupt+0x191/0x220 [amdgpu]
amdgpu_irq_dispatch+0xed/0x2c0 [amdgpu]
amdgpu_ih_process+0x84/0x100 [amdgpu]
This issue was exposed by commit 1446226d32a4 ("drm/amdgpu: Remove GC HW
IP 9.3.0 from noretry=1") which changed the default for Renoir APU from
noretry=1 to noretry=0, enabling retry fault handling and thus
exercising the buggy code path.
Fix this by adding a check for ih1.ring_size before attempting to use
it. Also restore the soft_ih support from commit dd299441654f ("drm/amdgpu:
Rework retry fault removal"). This is needed if the hardware doesn't
support secondary HW IH rings.
v2: additional updates (Alex)
(cherry picked from commit 6ce8d536c80aa1f059e82184f0d1994436b1d526) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/nvm: Fix double-free on aux add failure
After a successful auxiliary_device_init(), aux_dev->dev.release
(xe_nvm_release_dev()) is responsible for the kfree(nvm). When
there is failure with auxiliary_device_add(), driver will call
auxiliary_device_uninit(), which call put_device(). So that the
.release callback will be triggered to free the memory associated
with the auxiliary_device.
Move the kfree(nvm) into the auxiliary_device_init() failure path
and remove the err goto path to fix below error.
"
[ 13.232905] ==================================================================
[ 13.232911] BUG: KASAN: double-free in xe_nvm_init+0x751/0xf10 [xe]
[ 13.233112] Free of addr ffff888120635000 by task systemd-udevd/273
[ 13.233120] CPU: 8 UID: 0 PID: 273 Comm: systemd-udevd Not tainted 6.19.0-rc2-lgci-xe-kernel+ #225 PREEMPT(voluntary)
...
[ 13.233125] Call Trace:
[ 13.233126] <TASK>
[ 13.233127] dump_stack_lvl+0x7f/0xc0
[ 13.233132] print_report+0xce/0x610
[ 13.233136] ? kasan_complete_mode_report_info+0x5d/0x1e0
[ 13.233139] ? xe_nvm_init+0x751/0xf10 [xe]
...
"
v2: drop err goto path. (Alexander)
(cherry picked from commit a3187c0c2bbd947ffff97f90d077ac88f9c2a215) |
| In the Linux kernel, the following vulnerability has been resolved:
mm/shmem, swap: fix race of truncate and swap entry split
The helper for shmem swap freeing is not handling the order of swap
entries correctly. It uses xa_cmpxchg_irq to erase the swap entry, but it
gets the entry order before that using xa_get_order without lock
protection, and it may get an outdated order value if the entry is split
or changed in other ways after the xa_get_order and before the
xa_cmpxchg_irq.
And besides, the order could grow and be larger than expected, and cause
truncation to erase data beyond the end border. For example, if the
target entry and following entries are swapped in or freed, then a large
folio was added in place and swapped out, using the same entry, the
xa_cmpxchg_irq will still succeed, it's very unlikely to happen though.
To fix that, open code the Xarray cmpxchg and put the order retrieval and
value checking in the same critical section. Also, ensure the order won't
exceed the end border, skip it if the entry goes across the border.
Skipping large swap entries crosses the end border is safe here. Shmem
truncate iterates the range twice, in the first iteration,
find_lock_entries already filtered such entries, and shmem will swapin the
entries that cross the end border and partially truncate the folio (split
the folio or at least zero part of it). So in the second loop here, if we
see a swap entry that crosses the end order, it must at least have its
content erased already.
I observed random swapoff hangs and kernel panics when stress testing
ZSWAP with shmem. After applying this patch, all problems are gone. |
| In the Linux kernel, the following vulnerability has been resolved:
perf: sched: Fix perf crash with new is_user_task() helper
In order to do a user space stacktrace the current task needs to be a user
task that has executed in user space. It use to be possible to test if a
task is a user task or not by simply checking the task_struct mm field. If
it was non NULL, it was a user task and if not it was a kernel task.
But things have changed over time, and some kernel tasks now have their
own mm field.
An idea was made to instead test PF_KTHREAD and two functions were used to
wrap this check in case it became more complex to test if a task was a
user task or not[1]. But this was rejected and the C code simply checked
the PF_KTHREAD directly.
It was later found that not all kernel threads set PF_KTHREAD. The io-uring
helpers instead set PF_USER_WORKER and this needed to be added as well.
But checking the flags is still not enough. There's a very small window
when a task exits that it frees its mm field and it is set back to NULL.
If perf were to trigger at this moment, the flags test would say its a
user space task but when perf would read the mm field it would crash with
at NULL pointer dereference.
Now there are flags that can be used to test if a task is exiting, but
they are set in areas that perf may still want to profile the user space
task (to see where it exited). The only real test is to check both the
flags and the mm field.
Instead of making this modification in every location, create a new
is_user_task() helper function that does all the tests needed to know if
it is safe to read the user space memory or not.
[1] https://lore.kernel.org/all/20250425204120.639530125@goodmis.org/ |
| In the Linux kernel, the following vulnerability has been resolved:
virtio_net: Fix misalignment bug in struct virtnet_info
Use the new TRAILING_OVERLAP() helper to fix a misalignment bug
along with the following warning:
drivers/net/virtio_net.c:429:46: warning: structure containing a flexible array member is not at the end of another structure [-Wflex-array-member-not-at-end]
This helper creates a union between a flexible-array member (FAM)
and a set of members that would otherwise follow it (in this case
`u8 rss_hash_key_data[VIRTIO_NET_RSS_MAX_KEY_SIZE];`). This
overlays the trailing members (rss_hash_key_data) onto the FAM
(hash_key_data) while keeping the FAM and the start of MEMBERS aligned.
The static_assert() ensures this alignment remains.
Notice that due to tail padding in flexible `struct
virtio_net_rss_config_trailer`, `rss_trailer.hash_key_data`
(at offset 83 in struct virtnet_info) and `rss_hash_key_data` (at
offset 84 in struct virtnet_info) are misaligned by one byte. See
below:
struct virtio_net_rss_config_trailer {
__le16 max_tx_vq; /* 0 2 */
__u8 hash_key_length; /* 2 1 */
__u8 hash_key_data[]; /* 3 0 */
/* size: 4, cachelines: 1, members: 3 */
/* padding: 1 */
/* last cacheline: 4 bytes */
};
struct virtnet_info {
...
struct virtio_net_rss_config_trailer rss_trailer; /* 80 4 */
/* XXX last struct has 1 byte of padding */
u8 rss_hash_key_data[40]; /* 84 40 */
...
/* size: 832, cachelines: 13, members: 48 */
/* sum members: 801, holes: 8, sum holes: 31 */
/* paddings: 2, sum paddings: 5 */
};
After changes, those members are correctly aligned at offset 795:
struct virtnet_info {
...
union {
struct virtio_net_rss_config_trailer rss_trailer; /* 792 4 */
struct {
unsigned char __offset_to_hash_key_data[3]; /* 792 3 */
u8 rss_hash_key_data[40]; /* 795 40 */
}; /* 792 43 */
}; /* 792 44 */
...
/* size: 840, cachelines: 14, members: 47 */
/* sum members: 801, holes: 8, sum holes: 35 */
/* padding: 4 */
/* paddings: 1, sum paddings: 4 */
/* last cacheline: 8 bytes */
};
As a result, the RSS key passed to the device is shifted by 1
byte: the last byte is cut off, and instead a (possibly
uninitialized) byte is added at the beginning.
As a last note `struct virtio_net_rss_config_hdr *rss_hdr;` is also
moved to the end, since it seems those three members should stick
around together. :) |
| In the Linux kernel, the following vulnerability has been resolved:
perf: Fix refcount warning on event->mmap_count increment
When calling refcount_inc(&event->mmap_count) inside perf_mmap_rb(), the
following warning is triggered:
refcount_t: addition on 0; use-after-free.
WARNING: lib/refcount.c:25
PoC:
struct perf_event_attr attr = {0};
int fd = syscall(__NR_perf_event_open, &attr, 0, -1, -1, 0);
mmap(NULL, 0x3000, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
int victim = syscall(__NR_perf_event_open, &attr, 0, -1, fd,
PERF_FLAG_FD_OUTPUT);
mmap(NULL, 0x3000, PROT_READ | PROT_WRITE, MAP_SHARED, victim, 0);
This occurs when creating a group member event with the flag
PERF_FLAG_FD_OUTPUT. The group leader should be mmap-ed and then mmap-ing
the event triggers the warning.
Since the event has copied the output_event in perf_event_set_output(),
event->rb is set. As a result, perf_mmap_rb() calls
refcount_inc(&event->mmap_count) when event->mmap_count = 0.
Disallow the case when event->mmap_count = 0. This also prevents two
events from updating the same user_page. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: Fix not set tty->port race condition
Revert commit bfc467db60b7 ("serial: remove redundant
tty_port_link_device()") because the tty_port_link_device() is not
redundant: the tty->port has to be confured before we call
uart_configure_port(), otherwise user-space can open console without TTY
linked to the driver.
This tty_port_link_device() was added explicitly to avoid this exact
issue in commit fb2b90014d78 ("tty: link tty and port before configuring
it as console"), so offending commit basically reverted the fix saying
it is redundant without addressing the actual race condition presented
there.
Reproducible always as tty->port warning on Qualcomm SoC with most of
devices disabled, so with very fast boot, and one serial device being
the console:
printk: legacy console [ttyMSM0] enabled
printk: legacy console [ttyMSM0] enabled
printk: legacy bootconsole [qcom_geni0] disabled
printk: legacy bootconsole [qcom_geni0] disabled
------------[ cut here ]------------
tty_init_dev: ttyMSM driver does not set tty->port. This would crash the kernel. Fix the driver!
WARNING: drivers/tty/tty_io.c:1414 at tty_init_dev.part.0+0x228/0x25c, CPU#2: systemd/1
Modules linked in: socinfo tcsrcc_eliza gcc_eliza sm3_ce fuse ipv6
CPU: 2 UID: 0 PID: 1 Comm: systemd Tainted: G S 6.19.0-rc4-next-20260108-00024-g2202f4d30aa8 #73 PREEMPT
Tainted: [S]=CPU_OUT_OF_SPEC
Hardware name: Qualcomm Technologies, Inc. Eliza (DT)
...
tty_init_dev.part.0 (drivers/tty/tty_io.c:1414 (discriminator 11)) (P)
tty_open (arch/arm64/include/asm/atomic_ll_sc.h:95 (discriminator 3) drivers/tty/tty_io.c:2073 (discriminator 3) drivers/tty/tty_io.c:2120 (discriminator 3))
chrdev_open (fs/char_dev.c:411)
do_dentry_open (fs/open.c:962)
vfs_open (fs/open.c:1094)
do_open (fs/namei.c:4634)
path_openat (fs/namei.c:4793)
do_filp_open (fs/namei.c:4820)
do_sys_openat2 (fs/open.c:1391 (discriminator 3))
...
Starting Network Name Resolution...
Apparently the flow with this small Yocto-based ramdisk user-space is:
driver (qcom_geni_serial.c): user-space:
============================ ===========
qcom_geni_serial_probe()
uart_add_one_port()
serial_core_register_port()
serial_core_add_one_port()
uart_configure_port()
register_console()
|
| open console
| ...
| tty_init_dev()
| driver->ports[idx] is NULL
|
tty_port_register_device_attr_serdev()
tty_port_link_device() <- set driver->ports[idx] |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/fpsimd: ptrace: Fix SVE writes on !SME systems
When SVE is supported but SME is not supported, a ptrace write to the
NT_ARM_SVE regset can place the tracee into an invalid state where
(non-streaming) SVE register data is stored in FP_STATE_SVE format but
TIF_SVE is clear. This can result in a later warning from
fpsimd_restore_current_state(), e.g.
WARNING: CPU: 0 PID: 7214 at arch/arm64/kernel/fpsimd.c:383 fpsimd_restore_current_state+0x50c/0x748
When this happens, fpsimd_restore_current_state() will set TIF_SVE,
placing the task into the correct state. This occurs before any other
check of TIF_SVE can possibly occur, as other checks of TIF_SVE only
happen while the FPSIMD/SVE/SME state is live. Thus, aside from the
warning, there is no functional issue.
This bug was introduced during rework to error handling in commit:
9f8bf718f2923 ("arm64/fpsimd: ptrace: Gracefully handle errors")
... where the setting of TIF_SVE was moved into a block which is only
executed when system_supports_sme() is true.
Fix this by removing the system_supports_sme() check. This ensures that
TIF_SVE is set for (SVE-formatted) writes to NT_ARM_SVE, at the cost of
unconditionally manipulating the tracee's saved svcr value. The
manipulation of svcr is benign and inexpensive, and we already do
similar elsewhere (e.g. during signal handling), so I don't think it's
worth guarding this with system_supports_sme() checks.
Aside from the above, there is no functional change. The 'type' argument
to sve_set_common() is only set to ARM64_VEC_SME (in ssve_set())) when
system_supports_sme(), so the ARM64_VEC_SME case in the switch statement
is still unreachable when !system_supports_sme(). When
CONFIG_ARM64_SME=n, the only caller of sve_set_common() is sve_set(),
and the compiler can constant-fold for the case where type is
ARM64_VEC_SVE, removing the logic for other cases. |
| Caido is a web security auditing toolkit. Prior to 0.55.0, Caido blocks non whitelisted domains to reach out through the 8080 port, and shows Host/IP is not allowed to connect to Caido on all endpoints. But this is bypassable by injecting a X-Forwarded-Host: 127.0.0.1:8080 header. This vulnerability is fixed in 0.55.0. |
| The PixelYourSite – Your smart PIXEL (TAG) & API Manager plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'pysTrafficSource' parameter and the 'pys_landing_page' parameter in all versions up to, and including, 11.2.0 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. |
| A Denial of Service (DoS) vulnerability was discovered in the TON Lite Server before v2024.09. The vulnerability arises from the handling of external arguments passed to locally executed "get methods." An attacker can inject a constructed Continuation object (an internal TVM type) that is normally restricted within the VM. When the TVM executes this malicious continuation, it consumes excessive CPU resources while accruing disproportionately low virtual gas costs. This "free" computation allows an attacker to monopolize the Lite Server's processing power, significantly reducing its throughput and causing a denial of service for legitimate users acting through the gateway. |
| A State Pollution vulnerability was discovered in the TON Virtual Machine (TVM) before v2025.04. The issue exists in the RUNVM instruction logic (VmState::run_child_vm), which is responsible for initializing child virtual machines. The operation moves critical resources (specifically libraries and log) from the parent state to a new child state in a non-atomic manner. If an Out-of-Gas (OOG) exception occurs after resources are moved but before the state transition is finalized, the parent VM retains a corrupted state where these resources are emptied/invalid. Because RUNVM supports gas isolation, the parent VM continues execution with this corrupted state, leading to unexpected behavior or denial of service within the contract's context. |