Search

Search Results (334133 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-1844 2 Pixelyoursite, Wordpress 2 Pixelyoursite Pro – Your Smart Pixel (tag) Manager, Wordpress 2026-02-18 7.2 High
The PixelYourSite PRO plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'pysTrafficSource' parameter and the 'pys_landing_page' parameter in all versions up to, and including, 12.4.0.2 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page.
CVE-2026-1987 2 Morelmathieuj, Wordpress 2 Scheduler Widget, Wordpress 2026-02-18 5.4 Medium
The Scheduler Widget plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 0.1.6. This is due to the `scheduler_widget_ajax_save_event()` function lacking proper authorization checks and ownership verification when updating events. This makes it possible for authenticated attackers, with Subscriber-level access and above, to modify any event in the scheduler via the `id` parameter granted they have knowledge of the event ID.
CVE-2026-2027 2 Ampenhancer, Wordpress 2 Amp Enhancer – Compatibility Layer For Official Amp Plugin, Wordpress 2026-02-18 4.4 Medium
The AMP Enhancer – Compatibility Layer for Official AMP Plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the AMP Custom CSS setting in all versions up to, and including, 1.0.49 due to insufficient input sanitization and output escaping on user supplied attributes. This makes it possible for authenticated attackers, with Administrator-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. This only affects multi-site installations and installations where unfiltered_html has been disabled.
CVE-2026-23117 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ice: add missing ice_deinit_hw() in devlink reinit path devlink-reload results in ice_init_hw failed error, and then removing the ice driver causes a NULL pointer dereference. [ +0.102213] ice 0000:ca:00.0: ice_init_hw failed: -16 ... [ +0.000001] Call Trace: [ +0.000003] <TASK> [ +0.000006] ice_unload+0x8f/0x100 [ice] [ +0.000081] ice_remove+0xba/0x300 [ice] Commit 1390b8b3d2be ("ice: remove duplicate call to ice_deinit_hw() on error paths") removed ice_deinit_hw() from ice_deinit_dev(). As a result ice_devlink_reinit_down() no longer calls ice_deinit_hw(), but ice_devlink_reinit_up() still calls ice_init_hw(). Since the control queues are not uninitialized, ice_init_hw() fails with -EBUSY. Add ice_deinit_hw() to ice_devlink_reinit_down() to correspond with ice_init_hw() in ice_devlink_reinit_up().
CVE-2026-23126 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: netdevsim: fix a race issue related to the operation on bpf_bound_progs list The netdevsim driver lacks a protection mechanism for operations on the bpf_bound_progs list. When the nsim_bpf_create_prog() performs list_add_tail, it is possible that nsim_bpf_destroy_prog() is simultaneously performs list_del. Concurrent operations on the list may lead to list corruption and trigger a kernel crash as follows: [ 417.290971] kernel BUG at lib/list_debug.c:62! [ 417.290983] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI [ 417.290992] CPU: 10 PID: 168 Comm: kworker/10:1 Kdump: loaded Not tainted 6.19.0-rc5 #1 [ 417.291003] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 417.291007] Workqueue: events bpf_prog_free_deferred [ 417.291021] RIP: 0010:__list_del_entry_valid_or_report+0xa7/0xc0 [ 417.291034] Code: a8 ff 0f 0b 48 89 fe 48 89 ca 48 c7 c7 48 a1 eb ae e8 ed fb a8 ff 0f 0b 48 89 fe 48 89 c2 48 c7 c7 80 a1 eb ae e8 d9 fb a8 ff <0f> 0b 48 89 d1 48 c7 c7 d0 a1 eb ae 48 89 f2 48 89 c6 e8 c2 fb a8 [ 417.291040] RSP: 0018:ffffb16a40807df8 EFLAGS: 00010246 [ 417.291046] RAX: 000000000000006d RBX: ffff8e589866f500 RCX: 0000000000000000 [ 417.291051] RDX: 0000000000000000 RSI: ffff8e59f7b23180 RDI: ffff8e59f7b23180 [ 417.291055] RBP: ffffb16a412c9000 R08: 0000000000000000 R09: 0000000000000003 [ 417.291059] R10: ffffb16a40807c80 R11: ffffffffaf9edce8 R12: ffff8e594427ac20 [ 417.291063] R13: ffff8e59f7b44780 R14: ffff8e58800b7a05 R15: 0000000000000000 [ 417.291074] FS: 0000000000000000(0000) GS:ffff8e59f7b00000(0000) knlGS:0000000000000000 [ 417.291079] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 417.291083] CR2: 00007fc4083efe08 CR3: 00000001c3626006 CR4: 0000000000770ee0 [ 417.291088] PKRU: 55555554 [ 417.291091] Call Trace: [ 417.291096] <TASK> [ 417.291103] nsim_bpf_destroy_prog+0x31/0x80 [netdevsim] [ 417.291154] __bpf_prog_offload_destroy+0x2a/0x80 [ 417.291163] bpf_prog_dev_bound_destroy+0x6f/0xb0 [ 417.291171] bpf_prog_free_deferred+0x18e/0x1a0 [ 417.291178] process_one_work+0x18a/0x3a0 [ 417.291188] worker_thread+0x27b/0x3a0 [ 417.291197] ? __pfx_worker_thread+0x10/0x10 [ 417.291207] kthread+0xe5/0x120 [ 417.291214] ? __pfx_kthread+0x10/0x10 [ 417.291221] ret_from_fork+0x31/0x50 [ 417.291230] ? __pfx_kthread+0x10/0x10 [ 417.291236] ret_from_fork_asm+0x1a/0x30 [ 417.291246] </TASK> Add a mutex lock, to prevent simultaneous addition and deletion operations on the list.
CVE-2026-23138 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tracing: Add recursion protection in kernel stack trace recording A bug was reported about an infinite recursion caused by tracing the rcu events with the kernel stack trace trigger enabled. The stack trace code called back into RCU which then called the stack trace again. Expand the ftrace recursion protection to add a set of bits to protect events from recursion. Each bit represents the context that the event is in (normal, softirq, interrupt and NMI). Have the stack trace code use the interrupt context to protect against recursion. Note, the bug showed an issue in both the RCU code as well as the tracing stacktrace code. This only handles the tracing stack trace side of the bug. The RCU fix will be handled separately.
CVE-2026-23141 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: send: check for inline extents in range_is_hole_in_parent() Before accessing the disk_bytenr field of a file extent item we need to check if we are dealing with an inline extent. This is because for inline extents their data starts at the offset of the disk_bytenr field. So accessing the disk_bytenr means we are accessing inline data or in case the inline data is less than 8 bytes we can actually cause an invalid memory access if this inline extent item is the first item in the leaf or access metadata from other items.
CVE-2026-23158 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: gpio: virtuser: fix UAF in configfs release path The gpio-virtuser configfs release path uses guard(mutex) to protect the device structure. However, the device is freed before the guard cleanup runs, causing mutex_unlock() to operate on freed memory. Specifically, gpio_virtuser_device_config_group_release() destroys the mutex and frees the device while still inside the guard(mutex) scope. When the function returns, the guard cleanup invokes mutex_unlock(&dev->lock), resulting in a slab use-after-free. Limit the mutex lifetime by using a scoped_guard() only around the activation check, so that the lock is released before mutex_destroy() and kfree() are called.
CVE-2026-23165 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: sfc: fix deadlock in RSS config read Since cited commit, core locks the net_device's rss_lock when handling ethtool -x command, so driver's implementation should not lock it again. Remove the latter.
CVE-2026-23171 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: bonding: fix use-after-free due to enslave fail after slave array update Fix a use-after-free which happens due to enslave failure after the new slave has been added to the array. Since the new slave can be used for Tx immediately, we can use it after it has been freed by the enslave error cleanup path which frees the allocated slave memory. Slave update array is supposed to be called last when further enslave failures are not expected. Move it after xdp setup to avoid any problems. It is very easy to reproduce the problem with a simple xdp_pass prog: ip l add bond1 type bond mode balance-xor ip l set bond1 up ip l set dev bond1 xdp object xdp_pass.o sec xdp_pass ip l add dumdum type dummy Then run in parallel: while :; do ip l set dumdum master bond1 1>/dev/null 2>&1; done; mausezahn bond1 -a own -b rand -A rand -B 1.1.1.1 -c 0 -t tcp "dp=1-1023, flags=syn" The crash happens almost immediately: [ 605.602850] Oops: general protection fault, probably for non-canonical address 0xe0e6fc2460000137: 0000 [#1] SMP KASAN NOPTI [ 605.602916] KASAN: maybe wild-memory-access in range [0x07380123000009b8-0x07380123000009bf] [ 605.602946] CPU: 0 UID: 0 PID: 2445 Comm: mausezahn Kdump: loaded Tainted: G B 6.19.0-rc6+ #21 PREEMPT(voluntary) [ 605.602979] Tainted: [B]=BAD_PAGE [ 605.602998] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 605.603032] RIP: 0010:netdev_core_pick_tx+0xcd/0x210 [ 605.603063] Code: 48 89 fa 48 c1 ea 03 80 3c 02 00 0f 85 3e 01 00 00 48 b8 00 00 00 00 00 fc ff df 4c 8b 6b 08 49 8d 7d 30 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 25 01 00 00 49 8b 45 30 4c 89 e2 48 89 ee 48 89 [ 605.603111] RSP: 0018:ffff88817b9af348 EFLAGS: 00010213 [ 605.603145] RAX: dffffc0000000000 RBX: ffff88817d28b420 RCX: 0000000000000000 [ 605.603172] RDX: 00e7002460000137 RSI: 0000000000000008 RDI: 07380123000009be [ 605.603199] RBP: ffff88817b541a00 R08: 0000000000000001 R09: fffffbfff3ed8c0c [ 605.603226] R10: ffffffff9f6c6067 R11: 0000000000000001 R12: 0000000000000000 [ 605.603253] R13: 073801230000098e R14: ffff88817d28b448 R15: ffff88817b541a84 [ 605.603286] FS: 00007f6570ef67c0(0000) GS:ffff888221dfa000(0000) knlGS:0000000000000000 [ 605.603319] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 605.603343] CR2: 00007f65712fae40 CR3: 000000011371b000 CR4: 0000000000350ef0 [ 605.603373] Call Trace: [ 605.603392] <TASK> [ 605.603410] __dev_queue_xmit+0x448/0x32a0 [ 605.603434] ? __pfx_vprintk_emit+0x10/0x10 [ 605.603461] ? __pfx_vprintk_emit+0x10/0x10 [ 605.603484] ? __pfx___dev_queue_xmit+0x10/0x10 [ 605.603507] ? bond_start_xmit+0xbfb/0xc20 [bonding] [ 605.603546] ? _printk+0xcb/0x100 [ 605.603566] ? __pfx__printk+0x10/0x10 [ 605.603589] ? bond_start_xmit+0xbfb/0xc20 [bonding] [ 605.603627] ? add_taint+0x5e/0x70 [ 605.603648] ? add_taint+0x2a/0x70 [ 605.603670] ? end_report.cold+0x51/0x75 [ 605.603693] ? bond_start_xmit+0xbfb/0xc20 [bonding] [ 605.603731] bond_start_xmit+0x623/0xc20 [bonding]
CVE-2026-23116 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: pmdomain: imx8m-blk-ctrl: Remove separate rst and clk mask for 8mq vpu For i.MX8MQ platform, the ADB in the VPUMIX domain has no separate reset and clock enable bits, but is ungated and reset together with the VPUs. So we can't reset G1 or G2 separately, it may led to the system hang. Remove rst_mask and clk_mask of imx8mq_vpu_blk_ctl_domain_data. Let imx8mq_vpu_power_notifier() do really vpu reset.
CVE-2026-23119 1 Linux 1 Linux Kernel 2026-02-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bonding: provide a net pointer to __skb_flow_dissect() After 3cbf4ffba5ee ("net: plumb network namespace into __skb_flow_dissect") we have to provide a net pointer to __skb_flow_dissect(), either via skb->dev, skb->sk, or a user provided pointer. In the following case, syzbot was able to cook a bare skb. WARNING: net/core/flow_dissector.c:1131 at __skb_flow_dissect+0xb57/0x68b0 net/core/flow_dissector.c:1131, CPU#1: syz.2.1418/11053 Call Trace: <TASK> bond_flow_dissect drivers/net/bonding/bond_main.c:4093 [inline] __bond_xmit_hash+0x2d7/0xba0 drivers/net/bonding/bond_main.c:4157 bond_xmit_hash_xdp drivers/net/bonding/bond_main.c:4208 [inline] bond_xdp_xmit_3ad_xor_slave_get drivers/net/bonding/bond_main.c:5139 [inline] bond_xdp_get_xmit_slave+0x1fd/0x710 drivers/net/bonding/bond_main.c:5515 xdp_master_redirect+0x13f/0x2c0 net/core/filter.c:4388 bpf_prog_run_xdp include/net/xdp.h:700 [inline] bpf_test_run+0x6b2/0x7d0 net/bpf/test_run.c:421 bpf_prog_test_run_xdp+0x795/0x10e0 net/bpf/test_run.c:1390 bpf_prog_test_run+0x2c7/0x340 kernel/bpf/syscall.c:4703 __sys_bpf+0x562/0x860 kernel/bpf/syscall.c:6182 __do_sys_bpf kernel/bpf/syscall.c:6274 [inline] __se_sys_bpf kernel/bpf/syscall.c:6272 [inline] __x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:6272 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xec/0xf80 arch/x86/entry/syscall_64.c:94
CVE-2026-23124 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6: annotate data-race in ndisc_router_discovery() syzbot found that ndisc_router_discovery() could read and write in6_dev->ra_mtu without holding a lock [1] This looks fine, IFLA_INET6_RA_MTU is best effort. Add READ_ONCE()/WRITE_ONCE() to document the race. Note that we might also reject illegal MTU values (mtu < IPV6_MIN_MTU || mtu > skb->dev->mtu) in a future patch. [1] BUG: KCSAN: data-race in ndisc_router_discovery / ndisc_router_discovery read to 0xffff888119809c20 of 4 bytes by task 25817 on cpu 1: ndisc_router_discovery+0x151d/0x1c90 net/ipv6/ndisc.c:1558 ndisc_rcv+0x2ad/0x3d0 net/ipv6/ndisc.c:1841 icmpv6_rcv+0xe5a/0x12f0 net/ipv6/icmp.c:989 ip6_protocol_deliver_rcu+0xb2a/0x10d0 net/ipv6/ip6_input.c:438 ip6_input_finish+0xf0/0x1d0 net/ipv6/ip6_input.c:489 NF_HOOK include/linux/netfilter.h:318 [inline] ip6_input+0x5e/0x140 net/ipv6/ip6_input.c:500 ip6_mc_input+0x27c/0x470 net/ipv6/ip6_input.c:590 dst_input include/net/dst.h:474 [inline] ip6_rcv_finish+0x336/0x340 net/ipv6/ip6_input.c:79 ... write to 0xffff888119809c20 of 4 bytes by task 25816 on cpu 0: ndisc_router_discovery+0x155a/0x1c90 net/ipv6/ndisc.c:1559 ndisc_rcv+0x2ad/0x3d0 net/ipv6/ndisc.c:1841 icmpv6_rcv+0xe5a/0x12f0 net/ipv6/icmp.c:989 ip6_protocol_deliver_rcu+0xb2a/0x10d0 net/ipv6/ip6_input.c:438 ip6_input_finish+0xf0/0x1d0 net/ipv6/ip6_input.c:489 NF_HOOK include/linux/netfilter.h:318 [inline] ip6_input+0x5e/0x140 net/ipv6/ip6_input.c:500 ip6_mc_input+0x27c/0x470 net/ipv6/ip6_input.c:590 dst_input include/net/dst.h:474 [inline] ip6_rcv_finish+0x336/0x340 net/ipv6/ip6_input.c:79 ... value changed: 0x00000000 -> 0xe5400659
CVE-2026-23129 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dpll: Prevent duplicate registrations Modify the internal registration helpers dpll_xa_ref_{dpll,pin}_add() to reject duplicate registration attempts. Previously, if a caller attempted to register the same pin multiple times (with the same ops, priv, and cookie) on the same device, the core silently increments the reference count and return success. This behavior is incorrect because if the caller makes these duplicate registrations then for the first one dpll_pin_registration is allocated and for others the associated dpll_pin_ref.refcount is incremented. During the first unregistration the associated dpll_pin_registration is freed and for others WARN is fired. Fix this by updating the logic to return `-EEXIST` if a matching registration is found to enforce a strict "register once" policy.
CVE-2026-23130 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix dead lock while flushing management frames Commit [1] converted the management transmission work item into a wiphy work. Since a wiphy work can only run under wiphy lock protection, a race condition happens in below scenario: 1. a management frame is queued for transmission. 2. ath12k_mac_op_flush() gets called to flush pending frames associated with the hardware (i.e, vif being NULL). Then in ath12k_mac_flush() the process waits for the transmission done. 3. Since wiphy lock has been taken by the flush process, the transmission work item has no chance to run, hence the dead lock. >From user view, this dead lock results in below issue: wlp8s0: authenticate with xxxxxx (local address=xxxxxx) wlp8s0: send auth to xxxxxx (try 1/3) wlp8s0: authenticate with xxxxxx (local address=xxxxxx) wlp8s0: send auth to xxxxxx (try 1/3) wlp8s0: authenticated wlp8s0: associate with xxxxxx (try 1/3) wlp8s0: aborting association with xxxxxx by local choice (Reason: 3=DEAUTH_LEAVING) ath12k_pci 0000:08:00.0: failed to flush mgmt transmit queue, mgmt pkts pending 1 The dead lock can be avoided by invoking wiphy_work_flush() to proactively run the queued work item. Note actually it is already present in ath12k_mac_op_flush(), however it does not protect the case where vif being NULL. Hence move it ahead to cover this case as well. Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.1.c5-00302-QCAHMTSWPL_V1.0_V2.0_SILICONZ-1.115823.3
CVE-2026-23131 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: platform/x86: hp-bioscfg: Fix kobject warnings for empty attribute names The hp-bioscfg driver attempts to register kobjects with empty names when the HP BIOS returns attributes with empty name strings. This causes multiple kernel warnings: kobject: (00000000135fb5e6): attempted to be registered with empty name! WARNING: CPU: 14 PID: 3336 at lib/kobject.c:219 kobject_add_internal+0x2eb/0x310 Add validation in hp_init_bios_buffer_attribute() to check if the attribute name is empty after parsing it from the WMI buffer. If empty, log a debug message and skip registration of that attribute, allowing the module to continue processing other valid attributes.
CVE-2026-23132 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/bridge: synopsys: dw-dp: fix error paths of dw_dp_bind Fix several issues in dw_dp_bind() error handling: 1. Missing return after drm_bridge_attach() failure - the function continued execution instead of returning an error. 2. Resource leak: drm_dp_aux_register() is not a devm function, so drm_dp_aux_unregister() must be called on all error paths after aux registration succeeds. This affects errors from: - drm_bridge_attach() - phy_init() - devm_add_action_or_reset() - platform_get_irq() - devm_request_threaded_irq() 3. Bug fix: platform_get_irq() returns the IRQ number or a negative error code, but the error path was returning ERR_PTR(ret) instead of ERR_PTR(dp->irq). Use a goto label for cleanup to ensure consistent error handling.
CVE-2026-23133 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath10k: fix dma_free_coherent() pointer dma_alloc_coherent() allocates a DMA mapped buffer and stores the addresses in XXX_unaligned fields. Those should be reused when freeing the buffer rather than the aligned addresses.
CVE-2026-23134 1 Linux 1 Linux Kernel 2026-02-18 N/A
In the Linux kernel, the following vulnerability has been resolved: slab: fix kmalloc_nolock() context check for PREEMPT_RT On PREEMPT_RT kernels, local_lock becomes a sleeping lock. The current check in kmalloc_nolock() only verifies we're not in NMI or hard IRQ context, but misses the case where preemption is disabled. When a BPF program runs from a tracepoint with preemption disabled (preempt_count > 0), kmalloc_nolock() proceeds to call local_lock_irqsave() which attempts to acquire a sleeping lock, triggering: BUG: sleeping function called from invalid context in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 6128 preempt_count: 2, expected: 0 Fix this by checking !preemptible() on PREEMPT_RT, which directly expresses the constraint that we cannot take a sleeping lock when preemption is disabled. This encompasses the previous checks for NMI and hard IRQ contexts while also catching cases where preemption is disabled.
CVE-2026-23136 1 Linux 1 Linux Kernel 2026-02-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: libceph: reset sparse-read state in osd_fault() When a fault occurs, the connection is abandoned, reestablished, and any pending operations are retried. The OSD client tracks the progress of a sparse-read reply using a separate state machine, largely independent of the messenger's state. If a connection is lost mid-payload or the sparse-read state machine returns an error, the sparse-read state is not reset. The OSD client will then interpret the beginning of a new reply as the continuation of the old one. If this makes the sparse-read machinery enter a failure state, it may never recover, producing loops like: libceph: [0] got 0 extents libceph: data len 142248331 != extent len 0 libceph: osd0 (1)...:6801 socket error on read libceph: data len 142248331 != extent len 0 libceph: osd0 (1)...:6801 socket error on read Therefore, reset the sparse-read state in osd_fault(), ensuring retries start from a clean state.