| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Improper Neutralization of Input During Web Page Generation ("Cross-site Scripting") vulnerability in Drupal AT Internet Piano Analytics allows Cross-Site Scripting (XSS).This issue affects AT Internet Piano Analytics: from 0.0.0 before 1.0.1, from 2.0.0 before 2.3.1. |
| Incorrect Authorization vulnerability in Drupal Drupal Canvas allows Forceful Browsing.This issue affects Drupal Canvas: from 0.0.0 before 1.0.4. |
| OpenSTAManager is an open source management software for technical assistance and invoicing. In version 2.9.8 and prior, a SQL Injection vulnerability exists in the ajax_complete.php endpoint when handling the get_sedi operation. An authenticated attacker can inject malicious SQL code through the idanagrafica parameter, leading to unauthorized database access. At time of publication, no known patch exists. |
| A vulnerability in the web-based management interface of Cisco Prime Infrastructure could allow an authenticated, remote attacker to conduct a stored cross-site scripting (XSS) attack against users of the interface of an affected system.
This vulnerability exists because the web-based management interface does not properly validate user-supplied input. An attacker could exploit this vulnerability by inserting malicious code into specific data fields in the interface. A successful exploit could allow the attacker to execute arbitrary script code in the context of the affected interface or access sensitive, browser-based information. To exploit this vulnerability, an attacker must have valid administrative credentials. |
| cert-manager adds certificates and certificate issuers as resource types in Kubernetes clusters, and simplifies the process of obtaining, renewing and using those certificates. In versions from 1.18.0 to before 1.18.5 and from 1.19.0 to before 1.19.3, the cert-manager-controller performs DNS lookups during ACME DNS-01 processing (for zone discovery and propagation self-checks). By default, these lookups use standard unencrypted DNS. An attacker who can intercept and modify DNS traffic from the cert-manager-controller pod can insert a crafted entry into cert-manager's DNS cache. Accessing this entry will trigger a panic, resulting in denial‑of‑service (DoS) of the cert-manager controller. The issue can also be exploited if the authoritative DNS server for the domain being validated is controlled by a malicious actor. This issue has been patched in versions 1.18.5 and 1.19.3. |
| IBM App Connect Enterprise Certified Container up to 12.19.0 (Continuous Delivery) and 12.0 LTS (Long Term Support) could allow an attacker to access sensitive files or modify configurations due to an untrusted search path. |
| IBM webMethods Integration (on prem) - Integration Server 10.15 through IS_10.15_Core_Fix2411.1 to IS_11.1_Core_Fix8 IBM webMethods Integration could disclose sensitive user information in server responses. |
| Apollo Server is an open-source, spec-compliant GraphQL server that's compatible with any GraphQL client, including Apollo Client. In versions from 2.0.0 to 3.13.0, 4.2.0 to before 4.13.0, and 5.0.0 to before 5.4.0, the default configuration of startStandaloneServer from @apollo/server/standalone is vulnerable to denial of service (DoS) attacks through specially crafted request bodies with exotic character set encodings. This issue does not affect users that use @apollo/server as a dependency for integration packages, like @as-integrations/express5 or @as-integrations/next, only direct usage of startStandaloneServer. |
| melange allows users to build apk packages using declarative pipelines. From version 0.3.0 to before 0.40.3, an attacker who can provide build input values, but not modify pipeline definitions, could execute arbitrary shell commands if the pipeline uses ${{vars.*}} or ${{inputs.*}} substitutions in working-directory. The field is embedded into shell scripts without proper quote escaping. This issue has been patched in version 0.40.3. |
| Alist is a file list program that supports multiple storages, powered by Gin and Solidjs. Prior to version 3.57.0, the application disables TLS certificate verification by default for all outgoing storage driver communications, making the system vulnerable to Man-in-the-Middle (MitM) attacks. This enables the complete decryption, theft, and manipulation of all data transmitted during storage operations, severely compromising the confidentiality and integrity of user data. This issue has been patched in version 3.57.0. |
| Langroid is a framework for building large-language-model-powered applications. Prior to version 0.59.32, there is a bypass to the fix for CVE-2025-46724. TableChatAgent can call pandas_eval tool to evaluate the expression. There is a WAF in langroid/utils/pandas_utils.py introduced to block code injection CVE-2025-46724. However it can be bypassed due to _literal_ok() returning False instead of raising UnsafeCommandError on invalid input, combined with unrestricted access to dangerous dunder attributes (__init__, __globals__, __builtins__). This allows chaining whitelisted DataFrame methods to leak the eval builtin and execute arbitrary code. This issue has been patched in version 0.59.32. |
| ESF-IDF is the Espressif Internet of Things (IOT) Development Framework. In versions 5.5.2, 5.4.3, 5.3.4, 5.2.6, and 5.1.6, a use-after-free vulnerability was reported in the BLE provisioning transport (protocomm_ble) layer. The issue can be triggered by a remote BLE client while the device is in provisioning mode. The vulnerability occurred when provisioning was stopped with keep_ble_on = true. In this configuration, internal protocomm_ble state and GATT metadata were freed while the BLE stack and GATT services remained active. Subsequent BLE read or write callbacks dereferenced freed memory, allowing a connected or newly connected client to trigger invalid memory acces. This issue has been patched in versions 5.5.3, 5.4.4, 5.3.5, 5.2.7, and 5.1.7. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: conntrack: Avoid nf_ct_helper_hash uses after free
If nf_conntrack_init_start() fails (for example due to a
register_nf_conntrack_bpf() failure), the nf_conntrack_helper_fini()
clean-up path frees the nf_ct_helper_hash map.
When built with NF_CONNTRACK=y, further netfilter modules (e.g:
netfilter_conntrack_ftp) can still be loaded and call
nf_conntrack_helpers_register(), independently of whether nf_conntrack
initialized correctly. This accesses the nf_ct_helper_hash dangling
pointer and causes a uaf, possibly leading to random memory corruption.
This patch guards nf_conntrack_helper_register() from accessing a freed
or uninitialized nf_ct_helper_hash pointer and fixes possible
uses-after-free when loading a conntrack module. |
| An improper isolation or compartmentalization vulnerability [CWE-653] in FortiClientMac version 7.4.2 and below, version 7.2.8 and below, 7.0 all versions and FortiVoiceUCDesktop 3.0 all versions desktop application may allow an authenticated attacker to inject code via Electron environment variables. |
| In the Linux kernel, the following vulnerability has been resolved:
md: fix soft lockup in status_resync
status_resync() will calculate 'curr_resync - recovery_active' to show
user a progress bar like following:
[============>........] resync = 61.4%
'curr_resync' and 'recovery_active' is updated in md_do_sync(), and
status_resync() can read them concurrently, hence it's possible that
'curr_resync - recovery_active' can overflow to a huge number. In this
case status_resync() will be stuck in the loop to print a large amount
of '=', which will end up soft lockup.
Fix the problem by setting 'resync' to MD_RESYNC_ACTIVE in this case,
this way resync in progress will be reported to user. |
| In the Linux kernel, the following vulnerability has been resolved:
memcontrol: ensure memcg acquired by id is properly set up
In the eviction recency check, we attempt to retrieve the memcg to which
the folio belonged when it was evicted, by the memcg id stored in the
shadow entry. However, there is a chance that the retrieved memcg is not
the original memcg that has been killed, but a new one which happens to
have the same id.
This is a somewhat unfortunate, but acceptable and rare inaccuracy in the
heuristics. However, if we retrieve this new memcg between its allocation
and when it is properly attached to the memcg hierarchy, we could run into
the following NULL pointer exception during the memcg hierarchy traversal
done in mem_cgroup_get_nr_swap_pages():
[ 155757.793456] BUG: kernel NULL pointer dereference, address: 00000000000000c0
[ 155757.807568] #PF: supervisor read access in kernel mode
[ 155757.818024] #PF: error_code(0x0000) - not-present page
[ 155757.828482] PGD 401f77067 P4D 401f77067 PUD 401f76067 PMD 0
[ 155757.839985] Oops: 0000 [#1] SMP
[ 155757.887870] RIP: 0010:mem_cgroup_get_nr_swap_pages+0x3d/0xb0
[ 155757.899377] Code: 29 19 4a 02 48 39 f9 74 63 48 8b 97 c0 00 00 00 48 8b b7 58 02 00 00 48 2b b7 c0 01 00 00 48 39 f0 48 0f 4d c6 48 39 d1 74 42 <48> 8b b2 c0 00 00 00 48 8b ba 58 02 00 00 48 2b ba c0 01 00 00 48
[ 155757.937125] RSP: 0018:ffffc9002ecdfbc8 EFLAGS: 00010286
[ 155757.947755] RAX: 00000000003a3b1c RBX: 000007ffffffffff RCX: ffff888280183000
[ 155757.962202] RDX: 0000000000000000 RSI: 0007ffffffffffff RDI: ffff888bbc2d1000
[ 155757.976648] RBP: 0000000000000001 R08: 000000000000000b R09: ffff888ad9cedba0
[ 155757.991094] R10: ffffea0039c07900 R11: 0000000000000010 R12: ffff888b23a7b000
[ 155758.005540] R13: 0000000000000000 R14: ffff888bbc2d1000 R15: 000007ffffc71354
[ 155758.019991] FS: 00007f6234c68640(0000) GS:ffff88903f9c0000(0000) knlGS:0000000000000000
[ 155758.036356] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 155758.048023] CR2: 00000000000000c0 CR3: 0000000a83eb8004 CR4: 00000000007706e0
[ 155758.062473] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 155758.076924] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 155758.091376] PKRU: 55555554
[ 155758.096957] Call Trace:
[ 155758.102016] <TASK>
[ 155758.106502] ? __die+0x78/0xc0
[ 155758.112793] ? page_fault_oops+0x286/0x380
[ 155758.121175] ? exc_page_fault+0x5d/0x110
[ 155758.129209] ? asm_exc_page_fault+0x22/0x30
[ 155758.137763] ? mem_cgroup_get_nr_swap_pages+0x3d/0xb0
[ 155758.148060] workingset_test_recent+0xda/0x1b0
[ 155758.157133] workingset_refault+0xca/0x1e0
[ 155758.165508] filemap_add_folio+0x4d/0x70
[ 155758.173538] page_cache_ra_unbounded+0xed/0x190
[ 155758.182919] page_cache_sync_ra+0xd6/0x1e0
[ 155758.191738] filemap_read+0x68d/0xdf0
[ 155758.199495] ? mlx5e_napi_poll+0x123/0x940
[ 155758.207981] ? __napi_schedule+0x55/0x90
[ 155758.216095] __x64_sys_pread64+0x1d6/0x2c0
[ 155758.224601] do_syscall_64+0x3d/0x80
[ 155758.232058] entry_SYSCALL_64_after_hwframe+0x46/0xb0
[ 155758.242473] RIP: 0033:0x7f62c29153b5
[ 155758.249938] Code: e8 48 89 75 f0 89 7d f8 48 89 4d e0 e8 b4 e6 f7 ff 41 89 c0 4c 8b 55 e0 48 8b 55 e8 48 8b 75 f0 8b 7d f8 b8 11 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 33 44 89 c7 48 89 45 f8 e8 e7 e6 f7 ff 48 8b
[ 155758.288005] RSP: 002b:00007f6234c5ffd0 EFLAGS: 00000293 ORIG_RAX: 0000000000000011
[ 155758.303474] RAX: ffffffffffffffda RBX: 00007f628c4e70c0 RCX: 00007f62c29153b5
[ 155758.318075] RDX: 000000000003c041 RSI: 00007f61d2986000 RDI: 0000000000000076
[ 155758.332678] RBP: 00007f6234c5fff0 R08: 0000000000000000 R09: 0000000064d5230c
[ 155758.347452] R10: 000000000027d450 R11: 0000000000000293 R12: 000000000003c041
[ 155758.362044] R13: 00007f61d2986000 R14: 00007f629e11b060 R15: 000000000027d450
[ 155758.376661] </TASK>
This patch fixes the issue by moving the memcg's id publication from the
alloc stage to
---truncated--- |
| Out-of-bounds read in enrollment with cdsp frame secfr trustlet prior to SMR Apr-2025 Release 1 allows local privileged attackers to read out-of-bounds memory. |
| In the Linux kernel, the following vulnerability has been resolved:
gfs2: Fix possible data races in gfs2_show_options()
Some fields such as gt_logd_secs of the struct gfs2_tune are accessed
without holding the lock gt_spin in gfs2_show_options():
val = sdp->sd_tune.gt_logd_secs;
if (val != 30)
seq_printf(s, ",commit=%d", val);
And thus can cause data races when gfs2_show_options() and other functions
such as gfs2_reconfigure() are concurrently executed:
spin_lock(>->gt_spin);
gt->gt_logd_secs = newargs->ar_commit;
To fix these possible data races, the lock sdp->sd_tune.gt_spin is
acquired before accessing the fields of gfs2_tune and released after these
accesses.
Further changes by Andreas:
- Don't hold the spin lock over the seq_printf operations. |
| A vulnerability in Brocade Fabric OS software v9.1.1, v9.0.1e, v8.2.3c, v7.4.2j, and earlier versions could allow a remote unauthenticated attacker to execute on a Brocade Fabric OS switch commands capable of modifying zoning, disabling the switch, disabling ports, and modifying the switch IP address. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/swap: fix swap_info_struct race between swapoff and get_swap_pages()
The si->lock must be held when deleting the si from the available list.
Otherwise, another thread can re-add the si to the available list, which
can lead to memory corruption. The only place we have found where this
happens is in the swapoff path. This case can be described as below:
core 0 core 1
swapoff
del_from_avail_list(si) waiting
try lock si->lock acquire swap_avail_lock
and re-add si into
swap_avail_head
acquire si->lock but missing si already being added again, and continuing
to clear SWP_WRITEOK, etc.
It can be easily found that a massive warning messages can be triggered
inside get_swap_pages() by some special cases, for example, we call
madvise(MADV_PAGEOUT) on blocks of touched memory concurrently, meanwhile,
run much swapon-swapoff operations (e.g. stress-ng-swap).
However, in the worst case, panic can be caused by the above scene. In
swapoff(), the memory used by si could be kept in swap_info[] after
turning off a swap. This means memory corruption will not be caused
immediately until allocated and reset for a new swap in the swapon path.
A panic message caused: (with CONFIG_PLIST_DEBUG enabled)
------------[ cut here ]------------
top: 00000000e58a3003, n: 0000000013e75cda, p: 000000008cd4451a
prev: 0000000035b1e58a, n: 000000008cd4451a, p: 000000002150ee8d
next: 000000008cd4451a, n: 000000008cd4451a, p: 000000008cd4451a
WARNING: CPU: 21 PID: 1843 at lib/plist.c:60 plist_check_prev_next_node+0x50/0x70
Modules linked in: rfkill(E) crct10dif_ce(E)...
CPU: 21 PID: 1843 Comm: stress-ng Kdump: ... 5.10.134+
Hardware name: Alibaba Cloud ECS, BIOS 0.0.0 02/06/2015
pstate: 60400005 (nZCv daif +PAN -UAO -TCO BTYPE=--)
pc : plist_check_prev_next_node+0x50/0x70
lr : plist_check_prev_next_node+0x50/0x70
sp : ffff0018009d3c30
x29: ffff0018009d3c40 x28: ffff800011b32a98
x27: 0000000000000000 x26: ffff001803908000
x25: ffff8000128ea088 x24: ffff800011b32a48
x23: 0000000000000028 x22: ffff001800875c00
x21: ffff800010f9e520 x20: ffff001800875c00
x19: ffff001800fdc6e0 x18: 0000000000000030
x17: 0000000000000000 x16: 0000000000000000
x15: 0736076307640766 x14: 0730073007380731
x13: 0736076307640766 x12: 0730073007380731
x11: 000000000004058d x10: 0000000085a85b76
x9 : ffff8000101436e4 x8 : ffff800011c8ce08
x7 : 0000000000000000 x6 : 0000000000000001
x5 : ffff0017df9ed338 x4 : 0000000000000001
x3 : ffff8017ce62a000 x2 : ffff0017df9ed340
x1 : 0000000000000000 x0 : 0000000000000000
Call trace:
plist_check_prev_next_node+0x50/0x70
plist_check_head+0x80/0xf0
plist_add+0x28/0x140
add_to_avail_list+0x9c/0xf0
_enable_swap_info+0x78/0xb4
__do_sys_swapon+0x918/0xa10
__arm64_sys_swapon+0x20/0x30
el0_svc_common+0x8c/0x220
do_el0_svc+0x2c/0x90
el0_svc+0x1c/0x30
el0_sync_handler+0xa8/0xb0
el0_sync+0x148/0x180
irq event stamp: 2082270
Now, si->lock locked before calling 'del_from_avail_list()' to make sure
other thread see the si had been deleted and SWP_WRITEOK cleared together,
will not reinsert again.
This problem exists in versions after stable 5.10.y. |