| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: qrtr: Fix a refcount bug in qrtr_recvmsg()
Syzbot reported a bug as following:
refcount_t: addition on 0; use-after-free.
...
RIP: 0010:refcount_warn_saturate+0x17c/0x1f0 lib/refcount.c:25
...
Call Trace:
<TASK>
__refcount_add include/linux/refcount.h:199 [inline]
__refcount_inc include/linux/refcount.h:250 [inline]
refcount_inc include/linux/refcount.h:267 [inline]
kref_get include/linux/kref.h:45 [inline]
qrtr_node_acquire net/qrtr/af_qrtr.c:202 [inline]
qrtr_node_lookup net/qrtr/af_qrtr.c:398 [inline]
qrtr_send_resume_tx net/qrtr/af_qrtr.c:1003 [inline]
qrtr_recvmsg+0x85f/0x990 net/qrtr/af_qrtr.c:1070
sock_recvmsg_nosec net/socket.c:1017 [inline]
sock_recvmsg+0xe2/0x160 net/socket.c:1038
qrtr_ns_worker+0x170/0x1700 net/qrtr/ns.c:688
process_one_work+0x991/0x15c0 kernel/workqueue.c:2390
worker_thread+0x669/0x1090 kernel/workqueue.c:2537
It occurs in the concurrent scenario of qrtr_recvmsg() and
qrtr_endpoint_unregister() as following:
cpu0 cpu1
qrtr_recvmsg qrtr_endpoint_unregister
qrtr_send_resume_tx qrtr_node_release
qrtr_node_lookup mutex_lock(&qrtr_node_lock)
spin_lock_irqsave(&qrtr_nodes_lock, ) refcount_dec_and_test(&node->ref) [node->ref == 0]
radix_tree_lookup [node != NULL] __qrtr_node_release
qrtr_node_acquire spin_lock_irqsave(&qrtr_nodes_lock, )
kref_get(&node->ref) [WARNING] ...
mutex_unlock(&qrtr_node_lock)
Use qrtr_node_lock to protect qrtr_node_lookup() implementation, this
is actually improving the protection of node reference. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/ttm: fix bulk_move corruption when adding a entry
When the resource is the first in the bulk_move range, adding it again
(thus moving it to the tail) will corrupt the list since the first
pointer is not moved. This eventually lead to null pointer deref in
ttm_lru_bulk_move_del() |
| In the Linux kernel, the following vulnerability has been resolved:
mfd: arizona: Use pm_runtime_resume_and_get() to prevent refcnt leak
In arizona_clk32k_enable(), we should use pm_runtime_resume_and_get()
as pm_runtime_get_sync() will increase the refcnt even when it
returns an error. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Block switchdev mode when ADQ is active and vice versa
ADQ and switchdev are not supported simultaneously. Enabling both at the
same time can result in nullptr dereference.
To prevent this, check if ADQ is active when changing devlink mode to
switchdev mode, and check if switchdev is active when enabling ADQ. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: cpumap: Fix memory leak in cpu_map_update_elem
Syzkaller reported a memory leak as follows:
BUG: memory leak
unreferenced object 0xff110001198ef748 (size 192):
comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
hex dump (first 32 bytes):
00 00 00 00 4a 19 00 00 80 ad e3 e4 fe ff c0 00 ....J...........
00 b2 d3 0c 01 00 11 ff 28 f5 8e 19 01 00 11 ff ........(.......
backtrace:
[<ffffffffadd28087>] __cpu_map_entry_alloc+0xf7/0xb00
[<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
[<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
[<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
[<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
[<ffffffffb029cc80>] do_syscall_64+0x30/0x40
[<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6
BUG: memory leak
unreferenced object 0xff110001198ef528 (size 192):
comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffffadd281f0>] __cpu_map_entry_alloc+0x260/0xb00
[<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
[<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
[<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
[<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
[<ffffffffb029cc80>] do_syscall_64+0x30/0x40
[<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6
BUG: memory leak
unreferenced object 0xff1100010fd93d68 (size 8):
comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
hex dump (first 8 bytes):
00 00 00 00 00 00 00 00 ........
backtrace:
[<ffffffffade5db3e>] kvmalloc_node+0x11e/0x170
[<ffffffffadd28280>] __cpu_map_entry_alloc+0x2f0/0xb00
[<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
[<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
[<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
[<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
[<ffffffffb029cc80>] do_syscall_64+0x30/0x40
[<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6
In the cpu_map_update_elem flow, when kthread_stop is called before
calling the threadfn of rcpu->kthread, since the KTHREAD_SHOULD_STOP bit
of kthread has been set by kthread_stop, the threadfn of rcpu->kthread
will never be executed, and rcpu->refcnt will never be 0, which will
lead to the allocated rcpu, rcpu->queue and rcpu->queue->queue cannot be
released.
Calling kthread_stop before executing kthread's threadfn will return
-EINTR. We can complete the release of memory resources in this state. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix sysfs interface lifetime
The current nilfs2 sysfs support has issues with the timing of creation
and deletion of sysfs entries, potentially leading to null pointer
dereferences, use-after-free, and lockdep warnings.
Some of the sysfs attributes for nilfs2 per-filesystem instance refer to
metadata file "cpfile", "sufile", or "dat", but
nilfs_sysfs_create_device_group that creates those attributes is executed
before the inodes for these metadata files are loaded, and
nilfs_sysfs_delete_device_group which deletes these sysfs entries is
called after releasing their metadata file inodes.
Therefore, access to some of these sysfs attributes may occur outside of
the lifetime of these metadata files, resulting in inode NULL pointer
dereferences or use-after-free.
In addition, the call to nilfs_sysfs_create_device_group() is made during
the locking period of the semaphore "ns_sem" of nilfs object, so the
shrinker call caused by the memory allocation for the sysfs entries, may
derive lock dependencies "ns_sem" -> (shrinker) -> "locks acquired in
nilfs_evict_inode()".
Since nilfs2 may acquire "ns_sem" deep in the call stack holding other
locks via its error handler __nilfs_error(), this causes lockdep to report
circular locking. This is a false positive and no circular locking
actually occurs as no inodes exist yet when
nilfs_sysfs_create_device_group() is called. Fortunately, the lockdep
warnings can be resolved by simply moving the call to
nilfs_sysfs_create_device_group() out of "ns_sem".
This fixes these sysfs issues by revising where the device's sysfs
interface is created/deleted and keeping its lifetime within the lifetime
of the metadata files above. |
| In the Linux kernel, the following vulnerability has been resolved:
net: skb_partial_csum_set() fix against transport header magic value
skb->transport_header uses the special 0xFFFF value
to mark if the transport header was set or not.
We must prevent callers to accidentaly set skb->transport_header
to 0xFFFF. Note that only fuzzers can possibly do this today.
syzbot reported:
WARNING: CPU: 0 PID: 2340 at include/linux/skbuff.h:2847 skb_transport_offset include/linux/skbuff.h:2956 [inline]
WARNING: CPU: 0 PID: 2340 at include/linux/skbuff.h:2847 virtio_net_hdr_to_skb+0xbcc/0x10c0 include/linux/virtio_net.h:103
Modules linked in:
CPU: 0 PID: 2340 Comm: syz-executor.0 Not tainted 6.3.0-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/14/2023
RIP: 0010:skb_transport_header include/linux/skbuff.h:2847 [inline]
RIP: 0010:skb_transport_offset include/linux/skbuff.h:2956 [inline]
RIP: 0010:virtio_net_hdr_to_skb+0xbcc/0x10c0 include/linux/virtio_net.h:103
Code: 41 39 df 0f 82 c3 04 00 00 48 8b 7c 24 10 44 89 e6 e8 08 6e 59 ff 48 85 c0 74 54 e8 ce 36 7e fc e9 37 f8 ff ff e8 c4 36 7e fc <0f> 0b e9 93 f8 ff ff 44 89 f7 44 89 e6 e8 32 38 7e fc 45 39 e6 0f
RSP: 0018:ffffc90004497880 EFLAGS: 00010293
RAX: ffffffff84fea55c RBX: 000000000000ffff RCX: ffff888120be2100
RDX: 0000000000000000 RSI: 000000000000ffff RDI: 000000000000ffff
RBP: ffffc90004497990 R08: ffffffff84fe9de5 R09: 0000000000000034
R10: ffffea00048ebd80 R11: 0000000000000034 R12: ffff88811dc2d9c8
R13: dffffc0000000000 R14: ffff88811dc2d9ae R15: 1ffff11023b85b35
FS: 00007f9211a59700(0000) GS:ffff8881f6c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000200002c0 CR3: 00000001215a5000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
packet_snd net/packet/af_packet.c:3076 [inline]
packet_sendmsg+0x4590/0x61a0 net/packet/af_packet.c:3115
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg net/socket.c:747 [inline]
__sys_sendto+0x472/0x630 net/socket.c:2144
__do_sys_sendto net/socket.c:2156 [inline]
__se_sys_sendto net/socket.c:2152 [inline]
__x64_sys_sendto+0xe5/0x100 net/socket.c:2152
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2f/0x50 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f9210c8c169
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 f1 19 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f9211a59168 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 00007f9210dabf80 RCX: 00007f9210c8c169
RDX: 000000000000ffed RSI: 00000000200000c0 RDI: 0000000000000003
RBP: 00007f9210ce7ca1 R08: 0000000020000540 R09: 0000000000000014
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 00007ffe135d65cf R14: 00007f9211a59300 R15: 0000000000022000 |
| In the Linux kernel, the following vulnerability has been resolved:
x86/MCE: Always save CS register on AMD Zen IF Poison errors
The Instruction Fetch (IF) units on current AMD Zen-based systems do not
guarantee a synchronous #MC is delivered for poison consumption errors.
Therefore, MCG_STATUS[EIPV|RIPV] will not be set. However, the
microarchitecture does guarantee that the exception is delivered within
the same context. In other words, the exact rIP is not known, but the
context is known to not have changed.
There is no architecturally-defined method to determine this behavior.
The Code Segment (CS) register is always valid on such IF unit poison
errors regardless of the value of MCG_STATUS[EIPV|RIPV].
Add a quirk to save the CS register for poison consumption from the IF
unit banks.
This is needed to properly determine the context of the error.
Otherwise, the severity grading function will assume the context is
IN_KERNEL due to the m->cs value being 0 (the initialized value). This
leads to unnecessary kernel panics on data poison errors due to the
kernel believing the poison consumption occurred in kernel context. |
| In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Handle cameras with invalid descriptors
If the source entity does not contain any pads, do not create a link. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: snic: Fix possible memory leak if device_add() fails
If device_add() returns error, the name allocated by dev_set_name() needs
be freed. As the comment of device_add() says, put_device() should be used
to give up the reference in the error path. So fix this by calling
put_device(), then the name can be freed in kobject_cleanp(). |
| In the Linux kernel, the following vulnerability has been resolved:
cassini: Fix a memory leak in the error handling path of cas_init_one()
cas_saturn_firmware_init() allocates some memory using vmalloc(). This
memory is freed in the .remove() function but not it the error handling
path of the probe.
Add the missing vfree() to avoid a memory leak, should an error occur. |
| In the Linux kernel, the following vulnerability has been resolved:
remoteproc: imx_dsp_rproc: Add custom memory copy implementation for i.MX DSP Cores
The IRAM is part of the HiFi DSP.
According to hardware specification only 32-bits write are allowed
otherwise we get a Kernel panic.
Therefore add a custom memory copy and memset functions to deal with
the above restriction. |
| In the Linux kernel, the following vulnerability has been resolved:
net: add vlan_get_protocol_and_depth() helper
Before blamed commit, pskb_may_pull() was used instead
of skb_header_pointer() in __vlan_get_protocol() and friends.
Few callers depended on skb->head being populated with MAC header,
syzbot caught one of them (skb_mac_gso_segment())
Add vlan_get_protocol_and_depth() to make the intent clearer
and use it where sensible.
This is a more generic fix than commit e9d3f80935b6
("net/af_packet: make sure to pull mac header") which was
dealing with a similar issue.
kernel BUG at include/linux/skbuff.h:2655 !
invalid opcode: 0000 [#1] SMP KASAN
CPU: 0 PID: 1441 Comm: syz-executor199 Not tainted 6.1.24-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/14/2023
RIP: 0010:__skb_pull include/linux/skbuff.h:2655 [inline]
RIP: 0010:skb_mac_gso_segment+0x68f/0x6a0 net/core/gro.c:136
Code: fd 48 8b 5c 24 10 44 89 6b 70 48 c7 c7 c0 ae 0d 86 44 89 e6 e8 a1 91 d0 00 48 c7 c7 00 af 0d 86 48 89 de 31 d2 e8 d1 4a e9 ff <0f> 0b 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 55 48 89 e5 41
RSP: 0018:ffffc90001bd7520 EFLAGS: 00010286
RAX: ffffffff8469736a RBX: ffff88810f31dac0 RCX: ffff888115a18b00
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffffc90001bd75e8 R08: ffffffff84697183 R09: fffff5200037adf9
R10: 0000000000000000 R11: dffffc0000000001 R12: 0000000000000012
R13: 000000000000fee5 R14: 0000000000005865 R15: 000000000000fed7
FS: 000055555633f300(0000) GS:ffff8881f6a00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020000000 CR3: 0000000116fea000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
[<ffffffff847018dd>] __skb_gso_segment+0x32d/0x4c0 net/core/dev.c:3419
[<ffffffff8470398a>] skb_gso_segment include/linux/netdevice.h:4819 [inline]
[<ffffffff8470398a>] validate_xmit_skb+0x3aa/0xee0 net/core/dev.c:3725
[<ffffffff84707042>] __dev_queue_xmit+0x1332/0x3300 net/core/dev.c:4313
[<ffffffff851a9ec7>] dev_queue_xmit+0x17/0x20 include/linux/netdevice.h:3029
[<ffffffff851b4a82>] packet_snd net/packet/af_packet.c:3111 [inline]
[<ffffffff851b4a82>] packet_sendmsg+0x49d2/0x6470 net/packet/af_packet.c:3142
[<ffffffff84669a12>] sock_sendmsg_nosec net/socket.c:716 [inline]
[<ffffffff84669a12>] sock_sendmsg net/socket.c:736 [inline]
[<ffffffff84669a12>] __sys_sendto+0x472/0x5f0 net/socket.c:2139
[<ffffffff84669c75>] __do_sys_sendto net/socket.c:2151 [inline]
[<ffffffff84669c75>] __se_sys_sendto net/socket.c:2147 [inline]
[<ffffffff84669c75>] __x64_sys_sendto+0xe5/0x100 net/socket.c:2147
[<ffffffff8551d40f>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<ffffffff8551d40f>] do_syscall_64+0x2f/0x50 arch/x86/entry/common.c:80
[<ffffffff85600087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
firewire: net: fix use after free in fwnet_finish_incoming_packet()
The netif_rx() function frees the skb so we can't dereference it to
save the skb->len. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ses: Handle enclosure with just a primary component gracefully
This reverts commit 3fe97ff3d949 ("scsi: ses: Don't attach if enclosure
has no components") and introduces proper handling of case where there are
no detected secondary components, but primary component (enumerated in
num_enclosures) does exist. That fix was originally proposed by Ding Hui
<dinghui@sangfor.com.cn>.
Completely ignoring devices that have one primary enclosure and no
secondary one results in ses_intf_add() bailing completely
scsi 2:0:0:254: enclosure has no enumerated components
scsi 2:0:0:254: Failed to bind enclosure -12ven in valid configurations such
even on valid configurations with 1 primary and 0 secondary enclosures as
below:
# sg_ses /dev/sg0
3PARdata SES 3321
Supported diagnostic pages:
Supported Diagnostic Pages [sdp] [0x0]
Configuration (SES) [cf] [0x1]
Short Enclosure Status (SES) [ses] [0x8]
# sg_ses -p cf /dev/sg0
3PARdata SES 3321
Configuration diagnostic page:
number of secondary subenclosures: 0
generation code: 0x0
enclosure descriptor list
Subenclosure identifier: 0 [primary]
relative ES process id: 0, number of ES processes: 1
number of type descriptor headers: 1
enclosure logical identifier (hex): 20000002ac02068d
enclosure vendor: 3PARdata product: VV rev: 3321
type descriptor header and text list
Element type: Unspecified, subenclosure id: 0
number of possible elements: 1
The changelog for the original fix follows
=====
We can get a crash when disconnecting the iSCSI session,
the call trace like this:
[ffff00002a00fb70] kfree at ffff00000830e224
[ffff00002a00fba0] ses_intf_remove at ffff000001f200e4
[ffff00002a00fbd0] device_del at ffff0000086b6a98
[ffff00002a00fc50] device_unregister at ffff0000086b6d58
[ffff00002a00fc70] __scsi_remove_device at ffff00000870608c
[ffff00002a00fca0] scsi_remove_device at ffff000008706134
[ffff00002a00fcc0] __scsi_remove_target at ffff0000087062e4
[ffff00002a00fd10] scsi_remove_target at ffff0000087064c0
[ffff00002a00fd70] __iscsi_unbind_session at ffff000001c872c4
[ffff00002a00fdb0] process_one_work at ffff00000810f35c
[ffff00002a00fe00] worker_thread at ffff00000810f648
[ffff00002a00fe70] kthread at ffff000008116e98
In ses_intf_add, components count could be 0, and kcalloc 0 size scomp,
but not saved in edev->component[i].scratch
In this situation, edev->component[0].scratch is an invalid pointer,
when kfree it in ses_intf_remove_enclosure, a crash like above would happen
The call trace also could be other random cases when kfree cannot catch
the invalid pointer
We should not use edev->component[] array when the components count is 0
We also need check index when use edev->component[] array in
ses_enclosure_data_process
===== |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: dma: fix memory leak running mt76_dma_tx_cleanup
Fix device unregister memory leak and alway cleanup all configured
rx queues in mt76_dma_tx_cleanup routine. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: don't check PageError in __extent_writepage
__extent_writepage currenly sets PageError whenever any error happens,
and the also checks for PageError to decide if to call error handling.
This leads to very unclear responsibility for cleaning up on errors.
In the VM and generic writeback helpers the basic idea is that once
I/O is fired off all error handling responsibility is delegated to the
end I/O handler. But if that end I/O handler sets the PageError bit,
and the submitter checks it, the bit could in some cases leak into the
submission context for fast enough I/O.
Fix this by simply not checking PageError and just using the local
ret variable to check for submission errors. This also fundamentally
solves the long problem documented in a comment in __extent_writepage
by never leaking the error bit into the submission context. |
| In the Linux kernel, the following vulnerability has been resolved:
powercap: arm_scmi: Remove recursion while parsing zones
Powercap zones can be defined as arranged in a hierarchy of trees and when
registering a zone with powercap_register_zone(), the kernel powercap
subsystem expects this to happen starting from the root zones down to the
leaves; on the other side, de-registration by powercap_deregister_zone()
must begin from the leaf zones.
Available SCMI powercap zones are retrieved dynamically from the platform
at probe time and, while any defined hierarchy between the zones is
described properly in the zones descriptor, the platform returns the
availables zones with no particular well-defined order: as a consequence,
the trees possibly composing the hierarchy of zones have to be somehow
walked properly to register the retrieved zones from the root.
Currently the ARM SCMI Powercap driver walks the zones using a recursive
algorithm; this approach, even though correct and tested can lead to kernel
stack overflow when processing a returned hierarchy of zones composed by
particularly high trees.
Avoid possible kernel stack overflow by substituting the recursive approach
with an iterative one supported by a dynamically allocated stack-like data
structure. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix warning and UAF when destroy the MR list
If the MR allocate failed, the MR recovery work not initialized
and list not cleared. Then will be warning and UAF when release
the MR:
WARNING: CPU: 4 PID: 824 at kernel/workqueue.c:3066 __flush_work.isra.0+0xf7/0x110
CPU: 4 PID: 824 Comm: mount.cifs Not tainted 6.1.0-rc5+ #82
RIP: 0010:__flush_work.isra.0+0xf7/0x110
Call Trace:
<TASK>
__cancel_work_timer+0x2ba/0x2e0
smbd_destroy+0x4e1/0x990
_smbd_get_connection+0x1cbd/0x2110
smbd_get_connection+0x21/0x40
cifs_get_tcp_session+0x8ef/0xda0
mount_get_conns+0x60/0x750
cifs_mount+0x103/0xd00
cifs_smb3_do_mount+0x1dd/0xcb0
smb3_get_tree+0x1d5/0x300
vfs_get_tree+0x41/0xf0
path_mount+0x9b3/0xdd0
__x64_sys_mount+0x190/0x1d0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
BUG: KASAN: use-after-free in smbd_destroy+0x4fc/0x990
Read of size 8 at addr ffff88810b156a08 by task mount.cifs/824
CPU: 4 PID: 824 Comm: mount.cifs Tainted: G W 6.1.0-rc5+ #82
Call Trace:
dump_stack_lvl+0x34/0x44
print_report+0x171/0x472
kasan_report+0xad/0x130
smbd_destroy+0x4fc/0x990
_smbd_get_connection+0x1cbd/0x2110
smbd_get_connection+0x21/0x40
cifs_get_tcp_session+0x8ef/0xda0
mount_get_conns+0x60/0x750
cifs_mount+0x103/0xd00
cifs_smb3_do_mount+0x1dd/0xcb0
smb3_get_tree+0x1d5/0x300
vfs_get_tree+0x41/0xf0
path_mount+0x9b3/0xdd0
__x64_sys_mount+0x190/0x1d0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Allocated by task 824:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_kmalloc+0x7a/0x90
_smbd_get_connection+0x1b6f/0x2110
smbd_get_connection+0x21/0x40
cifs_get_tcp_session+0x8ef/0xda0
mount_get_conns+0x60/0x750
cifs_mount+0x103/0xd00
cifs_smb3_do_mount+0x1dd/0xcb0
smb3_get_tree+0x1d5/0x300
vfs_get_tree+0x41/0xf0
path_mount+0x9b3/0xdd0
__x64_sys_mount+0x190/0x1d0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Freed by task 824:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x2a/0x40
____kasan_slab_free+0x143/0x1b0
__kmem_cache_free+0xc8/0x330
_smbd_get_connection+0x1c6a/0x2110
smbd_get_connection+0x21/0x40
cifs_get_tcp_session+0x8ef/0xda0
mount_get_conns+0x60/0x750
cifs_mount+0x103/0xd00
cifs_smb3_do_mount+0x1dd/0xcb0
smb3_get_tree+0x1d5/0x300
vfs_get_tree+0x41/0xf0
path_mount+0x9b3/0xdd0
__x64_sys_mount+0x190/0x1d0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Let's initialize the MR recovery work before MR allocate to prevent
the warning, remove the MRs from the list to prevent the UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
xsk: Fix xsk_diag use-after-free error during socket cleanup
Fix a use-after-free error that is possible if the xsk_diag interface
is used after the socket has been unbound from the device. This can
happen either due to the socket being closed or the device
disappearing. In the early days of AF_XDP, the way we tested that a
socket was not bound to a device was to simply check if the netdevice
pointer in the xsk socket structure was NULL. Later, a better system
was introduced by having an explicit state variable in the xsk socket
struct. For example, the state of a socket that is on the way to being
closed and has been unbound from the device is XSK_UNBOUND.
The commit in the Fixes tag below deleted the old way of signalling
that a socket is unbound, setting dev to NULL. This in the belief that
all code using the old way had been exterminated. That was
unfortunately not true as the xsk diagnostics code was still using the
old way and thus does not work as intended when a socket is going
down. Fix this by introducing a test against the state variable. If
the socket is in the state XSK_UNBOUND, simply abort the diagnostic's
netlink operation. |