| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
uacce: implement mremap in uacce_vm_ops to return -EPERM
The current uacce_vm_ops does not support the mremap operation of
vm_operations_struct. Implement .mremap to return -EPERM to remind
users.
The reason we need to explicitly disable mremap is that when the
driver does not implement .mremap, it uses the default mremap
method. This could lead to a risk scenario:
An application might first mmap address p1, then mremap to p2,
followed by munmap(p1), and finally munmap(p2). Since the default
mremap copies the original vma's vm_private_data (i.e., q) to the
new vma, both munmap operations would trigger vma_close, causing
q->qfr to be freed twice(qfr will be set to null here, so repeated
release is ok). |
| In the Linux kernel, the following vulnerability has been resolved:
vsock/virtio: Coalesce only linear skb
vsock/virtio common tries to coalesce buffers in rx queue: if a linear skb
(with a spare tail room) is followed by a small skb (length limited by
GOOD_COPY_LEN = 128), an attempt is made to join them.
Since the introduction of MSG_ZEROCOPY support, assumption that a small skb
will always be linear is incorrect. In the zerocopy case, data is lost and
the linear skb is appended with uninitialized kernel memory.
Of all 3 supported virtio-based transports, only loopback-transport is
affected. G2H virtio-transport rx queue operates on explicitly linear skbs;
see virtio_vsock_alloc_linear_skb() in virtio_vsock_rx_fill(). H2G
vhost-transport may allocate non-linear skbs, but only for sizes that are
not considered for coalescence; see PAGE_ALLOC_COSTLY_ORDER in
virtio_vsock_alloc_skb().
Ensure only linear skbs are coalesced. Note that skb_tailroom(last_skb) > 0
guarantees last_skb is linear. |
| In the Linux kernel, the following vulnerability has been resolved:
can: ems_usb: ems_usb_read_bulk_callback(): fix URB memory leak
Fix similar memory leak as in commit 7352e1d5932a ("can: gs_usb:
gs_usb_receive_bulk_callback(): fix URB memory leak").
In ems_usb_open(), the URBs for USB-in transfers are allocated, added to
the dev->rx_submitted anchor and submitted. In the complete callback
ems_usb_read_bulk_callback(), the URBs are processed and resubmitted. In
ems_usb_close() the URBs are freed by calling
usb_kill_anchored_urbs(&dev->rx_submitted).
However, this does not take into account that the USB framework unanchors
the URB before the complete function is called. This means that once an
in-URB has been completed, it is no longer anchored and is ultimately not
released in ems_usb_close().
Fix the memory leak by anchoring the URB in the
ems_usb_read_bulk_callback() to the dev->rx_submitted anchor. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: authencesn - reject too-short AAD (assoclen<8) to match ESP/ESN spec
authencesn assumes an ESP/ESN-formatted AAD. When assoclen is shorter than
the minimum expected length, crypto_authenc_esn_decrypt() can advance past
the end of the destination scatterlist and trigger a NULL pointer dereference
in scatterwalk_map_and_copy(), leading to a kernel panic (DoS).
Add a minimum AAD length check to fail fast on invalid inputs. |
| In the Linux kernel, the following vulnerability has been resolved:
can: kvaser_usb: kvaser_usb_read_bulk_callback(): fix URB memory leak
Fix similar memory leak as in commit 7352e1d5932a ("can: gs_usb:
gs_usb_receive_bulk_callback(): fix URB memory leak").
In kvaser_usb_set_{,data_}bittiming() -> kvaser_usb_setup_rx_urbs(), the
URBs for USB-in transfers are allocated, added to the dev->rx_submitted
anchor and submitted. In the complete callback
kvaser_usb_read_bulk_callback(), the URBs are processed and resubmitted. In
kvaser_usb_remove_interfaces() the URBs are freed by calling
usb_kill_anchored_urbs(&dev->rx_submitted).
However, this does not take into account that the USB framework unanchors
the URB before the complete function is called. This means that once an
in-URB has been completed, it is no longer anchored and is ultimately not
released in usb_kill_anchored_urbs().
Fix the memory leak by anchoring the URB in the
kvaser_usb_read_bulk_callback() to the dev->rx_submitted anchor. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: hp-bioscfg: Fix kernel panic in GET_INSTANCE_ID macro
The GET_INSTANCE_ID macro that caused a kernel panic when accessing sysfs
attributes:
1. Off-by-one error: The loop condition used '<=' instead of '<',
causing access beyond array bounds. Since array indices are 0-based
and go from 0 to instances_count-1, the loop should use '<'.
2. Missing NULL check: The code dereferenced attr_name_kobj->name
without checking if attr_name_kobj was NULL, causing a null pointer
dereference in min_length_show() and other attribute show functions.
The panic occurred when fwupd tried to read BIOS configuration attributes:
Oops: general protection fault [#1] SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
RIP: 0010:min_length_show+0xcf/0x1d0 [hp_bioscfg]
Add a NULL check for attr_name_kobj before dereferencing and corrects
the loop boundary to match the pattern used elsewhere in the driver. |
| In the Linux kernel, the following vulnerability has been resolved:
uacce: ensure safe queue release with state management
Directly calling `put_queue` carries risks since it cannot
guarantee that resources of `uacce_queue` have been fully released
beforehand. So adding a `stop_queue` operation for the
UACCE_CMD_PUT_Q command and leaving the `put_queue` operation to
the final resource release ensures safety.
Queue states are defined as follows:
- UACCE_Q_ZOMBIE: Initial state
- UACCE_Q_INIT: After opening `uacce`
- UACCE_Q_STARTED: After `start` is issued via `ioctl`
When executing `poweroff -f` in virt while accelerator are still
working, `uacce_fops_release` and `uacce_remove` may execute
concurrently. This can cause `uacce_put_queue` within
`uacce_fops_release` to access a NULL `ops` pointer. Therefore, add
state checks to prevent accessing freed pointers. |
| A maliciously crafted GIF file, when parsed through Autodesk 3ds Max, can cause a Stack-Based Buffer Overflow vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process. |
| Improper Neutralization of Input During Web Page Generation ("Cross-site Scripting") vulnerability in Drupal AT Internet SmartTag allows Cross-Site Scripting (XSS).This issue affects AT Internet SmartTag: from 0.0.0 before 1.0.1. |
| Improper Neutralization of Input During Web Page Generation ("Cross-site Scripting") vulnerability in Drupal AT Internet Piano Analytics allows Cross-Site Scripting (XSS).This issue affects AT Internet Piano Analytics: from 0.0.0 before 1.0.1, from 2.0.0 before 2.3.1. |
| Authentication Bypass Using an Alternate Path or Channel vulnerability in Drupal Microsoft Entra ID SSO Login allows Privilege Escalation.This issue affects Microsoft Entra ID SSO Login: from 0.0.0 before 1.0.4. |
| A vulnerability was identified in iomad up to 5.0. Affected is an unknown function of the component Company Admin Block. Such manipulation leads to sql injection. The attack can be executed remotely. Upgrading to version 4.5 LTS and 5.0 is able to address this issue. You should upgrade the affected component. |
| Incorrect Authorization vulnerability in Drupal Drupal Canvas allows Forceful Browsing.This issue affects Drupal Canvas: from 0.0.0 before 1.0.4. |
| A vulnerability has been found in WeKan up to 8.20. Affected by this vulnerability is the function ComprehensiveBoardMigration of the file server/migrations/comprehensiveBoardMigration.js of the component Migration Operation Handler. The manipulation of the argument boardId leads to improper access controls. The attack is possible to be carried out remotely. Upgrading to version 8.21 addresses this issue. The identifier of the patch is cc35dafef57ef6e44a514a523f9a8d891e74ad8f. Upgrading the affected component is advised. |
| OpenSTAManager is an open source management software for technical assistance and invoicing. In version 2.9.8 and prior, a SQL Injection vulnerability exists in the ajax_complete.php endpoint when handling the get_sedi operation. An authenticated attacker can inject malicious SQL code through the idanagrafica parameter, leading to unauthorized database access. At time of publication, no known patch exists. |
| A vulnerability was found in WeKan up to 8.20. Affected by this issue is some unknown functionality of the file server/methods/positionHistory.js of the component Position-History Tracking. The manipulation results in missing authorization. The attack may be performed from remote. Upgrading to version 8.21 can resolve this issue. The patch is identified as 55576ec17722db094835470b386162c9a662fb60. It is advisable to upgrade the affected component. |
| IBM Db2 Big SQL on Cloud Pak for Data versions 7.6 (on CP4D 4.8), 7.7 (on CP4D 5.0), and 7.8 (on CP4D 5.1) do not properly limit the allocation of system resources. An authenticated user with internal knowledge of the environment could exploit this weakness to cause a denial of service. |
| IBM Concert 1.0.0 through 2.1.0 does not invalidate session after logout which could allow an authenticated user to impersonate another user on the system. |
| The Popup builder with Gamification, Multi-Step Popups, Page-Level Targeting, and WooCommerce Triggers plugin for WordPress is vulnerable to generic SQL Injection via the multiple REST API endpoints in all versions up to, and including, 2.2.0 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for unauthenticated attackers to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database.
Vulnerability was patched in version 2.2.1 for unauthenticated users, and fully patched in version 2.2.3 for Administrator+ level users. |
| A security flaw has been discovered in Open5GS up to 2.7.6. Affected by this vulnerability is the function hss_ogs_diam_cx_mar_cb of the file src/hss/hss-cx-path.c of the component VoLTE Cx-Test. The manipulation of the argument OGS_KEY_LEN results in stack-based buffer overflow. The attack may be launched remotely. The patch is identified as 54dda041211098730221d0ae20a2f9f9173e7a21. A patch should be applied to remediate this issue. |