| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/poll: correctly handle io_poll_add() return value on update
When the core of io_uring was updated to handle completions
consistently and with fixed return codes, the POLL_REMOVE opcode
with updates got slightly broken. If a POLL_ADD is pending and
then POLL_REMOVE is used to update the events of that request, if that
update causes the POLL_ADD to now trigger, then that completion is lost
and a CQE is never posted.
Additionally, ensure that if an update does cause an existing POLL_ADD
to complete, that the completion value isn't always overwritten with
-ECANCELED. For that case, whatever io_poll_add() set the value to
should just be retained. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: Fix refcount leak when invalid session is found on session lookup
When a session is found but its state is not SMB2_SESSION_VALID, It
indicates that no valid session was found, but it is missing to decrement
the reference count acquired by the session lookup, which results in
a reference count leak. This patch fixes the issue by explicitly calling
ksmbd_user_session_put to release the reference to the session. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix memory and information leak in smb3_reconfigure()
In smb3_reconfigure(), if smb3_sync_session_ctx_passwords() fails, the
function returns immediately without freeing and erasing the newly
allocated new_password and new_password2. This causes both a memory leak
and a potential information leak.
Fix this by calling kfree_sensitive() on both password buffers before
returning in this error case. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: properly keep track of conduit reference
Problem description
-------------------
DSA has a mumbo-jumbo of reference handling of the conduit net device
and its kobject which, sadly, is just wrong and doesn't make sense.
There are two distinct problems.
1. The OF path, which uses of_find_net_device_by_node(), never releases
the elevated refcount on the conduit's kobject. Nominally, the OF and
non-OF paths should result in objects having identical reference
counts taken, and it is already suspicious that
dsa_dev_to_net_device() has a put_device() call which is missing in
dsa_port_parse_of(), but we can actually even verify that an issue
exists. With CONFIG_DEBUG_KOBJECT_RELEASE=y, if we run this command
"before" and "after" applying this patch:
(unbind the conduit driver for net device eno2)
echo 0000:00:00.2 > /sys/bus/pci/drivers/fsl_enetc/unbind
we see these lines in the output diff which appear only with the patch
applied:
kobject: 'eno2' (ffff002009a3a6b8): kobject_release, parent 0000000000000000 (delayed 1000)
kobject: '109' (ffff0020099d59a0): kobject_release, parent 0000000000000000 (delayed 1000)
2. After we find the conduit interface one way (OF) or another (non-OF),
it can get unregistered at any time, and DSA remains with a long-lived,
but in this case stale, cpu_dp->conduit pointer. Holding the net
device's underlying kobject isn't actually of much help, it just
prevents it from being freed (but we never need that kobject
directly). What helps us to prevent the net device from being
unregistered is the parallel netdev reference mechanism (dev_hold()
and dev_put()).
Actually we actually use that netdev tracker mechanism implicitly on
user ports since commit 2f1e8ea726e9 ("net: dsa: link interfaces with
the DSA master to get rid of lockdep warnings"), via netdev_upper_dev_link().
But time still passes at DSA switch probe time between the initial
of_find_net_device_by_node() code and the user port creation time, time
during which the conduit could unregister itself and DSA wouldn't know
about it.
So we have to run of_find_net_device_by_node() under rtnl_lock() to
prevent that from happening, and release the lock only with the netdev
tracker having acquired the reference.
Do we need to keep the reference until dsa_unregister_switch() /
dsa_switch_shutdown()?
1: Maybe yes. A switch device will still be registered even if all user
ports failed to probe, see commit 86f8b1c01a0a ("net: dsa: Do not
make user port errors fatal"), and the cpu_dp->conduit pointers
remain valid. I haven't audited all call paths to see whether they
will actually use the conduit in lack of any user port, but if they
do, it seems safer to not rely on user ports for that reference.
2. Definitely yes. We support changing the conduit which a user port is
associated to, and we can get into a situation where we've moved all
user ports away from a conduit, thus no longer hold any reference to
it via the net device tracker. But we shouldn't let it go nonetheless
- see the next change in relation to dsa_tree_find_first_conduit()
and LAG conduits which disappear.
We have to be prepared to return to the physical conduit, so the CPU
port must explicitly keep another reference to it. This is also to
say: the user ports and their CPU ports may not always keep a
reference to the same conduit net device, and both are needed.
As for the conduit's kobject for the /sys/class/net/ entry, we don't
care about it, we can release it as soon as we hold the net device
object itself.
History and blame attribution
-----------------------------
The code has been refactored so many times, it is very difficult to
follow and properly attribute a blame, but I'll try to make a short
history which I hope to be correct.
We have two distinct probing paths:
- one for OF, introduced in 2016 i
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: Fix memory leak in get_file_all_info()
In get_file_all_info(), if vfs_getattr() fails, the function returns
immediately without freeing the allocated filename, leading to a memory
leak.
Fix this by freeing the filename before returning in this error case. |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: rtl8150: fix memory leak on usb_submit_urb() failure
In async_set_registers(), when usb_submit_urb() fails, the allocated
async_req structure and URB are not freed, causing a memory leak.
The completion callback async_set_reg_cb() is responsible for freeing
these allocations, but it is only called after the URB is successfully
submitted and completes (successfully or with error). If submission
fails, the callback never runs and the memory is leaked.
Fix this by freeing both the URB and the request structure in the error
path when usb_submit_urb() fails. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: s390: Fix gmap_helper_zap_one_page() again
A few checks were missing in gmap_helper_zap_one_page(), which can lead
to memory corruption in the guest under specific circumstances.
Add the missing checks. |
| In the Linux kernel, the following vulnerability has been resolved:
gve: defer interrupt enabling until NAPI registration
Currently, interrupts are automatically enabled immediately upon
request. This allows interrupt to fire before the associated NAPI
context is fully initialized and cause failures like below:
[ 0.946369] Call Trace:
[ 0.946369] <IRQ>
[ 0.946369] __napi_poll+0x2a/0x1e0
[ 0.946369] net_rx_action+0x2f9/0x3f0
[ 0.946369] handle_softirqs+0xd6/0x2c0
[ 0.946369] ? handle_edge_irq+0xc1/0x1b0
[ 0.946369] __irq_exit_rcu+0xc3/0xe0
[ 0.946369] common_interrupt+0x81/0xa0
[ 0.946369] </IRQ>
[ 0.946369] <TASK>
[ 0.946369] asm_common_interrupt+0x22/0x40
[ 0.946369] RIP: 0010:pv_native_safe_halt+0xb/0x10
Use the `IRQF_NO_AUTOEN` flag when requesting interrupts to prevent auto
enablement and explicitly enable the interrupt in NAPI initialization
path (and disable it during NAPI teardown).
This ensures that interrupt lifecycle is strictly coupled with
readiness of NAPI context. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/core: always drop device refcount in ib_del_sub_device_and_put()
Since nldev_deldev() (introduced by commit 060c642b2ab8 ("RDMA/nldev: Add
support to add/delete a sub IB device through netlink") grabs a reference
using ib_device_get_by_index() before calling ib_del_sub_device_and_put(),
we need to drop that reference before returning -EOPNOTSUPP error. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix use-after-free warning in btrfs_get_or_create_delayed_node()
Previously, btrfs_get_or_create_delayed_node() set the delayed_node's
refcount before acquiring the root->delayed_nodes lock.
Commit e8513c012de7 ("btrfs: implement ref_tracker for delayed_nodes")
moved refcount_set inside the critical section, which means there is
no longer a memory barrier between setting the refcount and setting
btrfs_inode->delayed_node.
Without that barrier, the stores to node->refs and
btrfs_inode->delayed_node may become visible out of order. Another
thread can then read btrfs_inode->delayed_node and attempt to
increment a refcount that hasn't been set yet, leading to a
refcounting bug and a use-after-free warning.
The fix is to move refcount_set back to where it was to take
advantage of the implicit memory barrier provided by lock
acquisition.
Because the allocations now happen outside of the lock's critical
section, they can use GFP_NOFS instead of GFP_ATOMIC. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: avoid chain re-validation if possible
Hamza Mahfooz reports cpu soft lock-ups in
nft_chain_validate():
watchdog: BUG: soft lockup - CPU#1 stuck for 27s! [iptables-nft-re:37547]
[..]
RIP: 0010:nft_chain_validate+0xcb/0x110 [nf_tables]
[..]
nft_immediate_validate+0x36/0x50 [nf_tables]
nft_chain_validate+0xc9/0x110 [nf_tables]
nft_immediate_validate+0x36/0x50 [nf_tables]
nft_chain_validate+0xc9/0x110 [nf_tables]
nft_immediate_validate+0x36/0x50 [nf_tables]
nft_chain_validate+0xc9/0x110 [nf_tables]
nft_immediate_validate+0x36/0x50 [nf_tables]
nft_chain_validate+0xc9/0x110 [nf_tables]
nft_immediate_validate+0x36/0x50 [nf_tables]
nft_chain_validate+0xc9/0x110 [nf_tables]
nft_immediate_validate+0x36/0x50 [nf_tables]
nft_chain_validate+0xc9/0x110 [nf_tables]
nft_table_validate+0x6b/0xb0 [nf_tables]
nf_tables_validate+0x8b/0xa0 [nf_tables]
nf_tables_commit+0x1df/0x1eb0 [nf_tables]
[..]
Currently nf_tables will traverse the entire table (chain graph), starting
from the entry points (base chains), exploring all possible paths
(chain jumps). But there are cases where we could avoid revalidation.
Consider:
1 input -> j2 -> j3
2 input -> j2 -> j3
3 input -> j1 -> j2 -> j3
Then the second rule does not need to revalidate j2, and, by extension j3,
because this was already checked during validation of the first rule.
We need to validate it only for rule 3.
This is needed because chain loop detection also ensures we do not exceed
the jump stack: Just because we know that j2 is cycle free, its last jump
might now exceed the allowed stack size. We also need to update all
reachable chains with the new largest observed call depth.
Care has to be taken to revalidate even if the chain depth won't be an
issue: chain validation also ensures that expressions are not called from
invalid base chains. For example, the masquerade expression can only be
called from NAT postrouting base chains.
Therefore we also need to keep record of the base chain context (type,
hooknum) and revalidate if the chain becomes reachable from a different
hook location. |
| In the Linux kernel, the following vulnerability has been resolved:
dm-verity: disable recursive forward error correction
There are two problems with the recursive correction:
1. It may cause denial-of-service. In fec_read_bufs, there is a loop that
has 253 iterations. For each iteration, we may call verity_hash_for_block
recursively. There is a limit of 4 nested recursions - that means that
there may be at most 253^4 (4 billion) iterations. Red Hat QE team
actually created an image that pushes dm-verity to this limit - and this
image just makes the udev-worker process get stuck in the 'D' state.
2. It doesn't work. In fec_read_bufs we store data into the variable
"fio->bufs", but fio bufs is shared between recursive invocations, if
"verity_hash_for_block" invoked correction recursively, it would
overwrite partially filled fio->bufs. |
| A flaw was found in Hibernate. A remote attacker with low privileges could exploit a second-order SQL injection vulnerability by providing specially crafted, unsanitized non-alphanumeric characters in the ID column when the InlineIdsOrClauseBuilder is used. This could lead to sensitive information disclosure, such as reading system files, and allow for data manipulation or deletion within the application's database, resulting in an application level denial of service. |
| gemini-mcp-tool execAsync Command Injection Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of gemini-mcp-tool. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the implementation of the execAsync method. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-27783. |
| github-kanban-mcp-server execAsync Command Injection Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of github-kanban-mcp-server. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the handling of the create_issue parameter. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-27784. |
| MCP Manager for Claude Desktop execute-command Command Injection Sandbox Escape Vulnerability. This vulnerability allows remote attackers to bypass the sandbox on affected installations of MCP Manager for Claude Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the processing of MCP config objects. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to escape the sandbox and execute arbitrary code in the context of the current process at medium integrity. Was ZDI-CAN-27810. |
| mcp-server-siri-shortcuts shortcutName Command Injection Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of mcp-server-siri-shortcuts. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability.
The specific flaw exists within the shortcutName parameter. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of the service account. Was ZDI-CAN-27910. |
| Katana Network Development Starter Kit executeCommand Command Injection Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Katana Network Development Starter Kit. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the implementation of the executeCommand method. The issue results from the lack of proper validation of a user-supplied string before using it to execute a system call. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-27786. |
| Foundation Agents MetaGPT deserialize_message Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Foundation Agents MetaGPT. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the deserialize_message function. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-28121. |
| Foundation Agents MetaGPT actionoutput_str_to_mapping Code Injection Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Foundation Agents MetaGPT. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the actionoutput_str_to_mapping function. The issue results from the lack of proper validation of a user-supplied string before using it to execute Python code. An attacker can leverage this vulnerability to execute code in the context of the service account. Was ZDI-CAN-28124. |