| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The Sell BTC - Cryptocurrency Selling Calculator plugin for WordPress is vulnerable to Stored Cross-Site Scripting via the 'orderform_data' AJAX action in all versions up to, and including, 1.5 due to insufficient input sanitization and output escaping. This makes it possible for unauthenticated attackers to inject arbitrary web scripts in order records that will execute whenever an administrator accesses the Orders page in the admin dashboard. The vulnerability was partially patched in version 1.5. |
| The NEX-Forms – Ultimate Forms Plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the NF5_Export_Forms class constructor in all versions up to, and including, 9.1.8. This makes it possible for unauthenticated attackers to export form configurations, that may include sensitive data, such as email addresses, PayPal API credentials, and third-party integration keys by enumerating the nex_forms_Id parameter. |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: make j1939_session_activate() fail if device is no longer registered
syzbot is still reporting
unregister_netdevice: waiting for vcan0 to become free. Usage count = 2
even after commit 93a27b5891b8 ("can: j1939: add missing calls in
NETDEV_UNREGISTER notification handler") was added. A debug printk() patch
found that j1939_session_activate() can succeed even after
j1939_cancel_active_session() from j1939_netdev_notify(NETDEV_UNREGISTER)
has completed.
Since j1939_cancel_active_session() is processed with the session list lock
held, checking ndev->reg_state in j1939_session_activate() with the session
list lock held can reliably close the race window. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix NULL dereference on root when tracing inode eviction
When evicting an inode the first thing we do is to setup tracing for it,
which implies fetching the root's id. But in btrfs_evict_inode() the
root might be NULL, as implied in the next check that we do in
btrfs_evict_inode().
Hence, we either should set the ->root_objectid to 0 in case the root is
NULL, or we move tracing setup after checking that the root is not
NULL. Setting the rootid to 0 at least gives us the possibility to trace
this call even in the case when the root is NULL, so that's the solution
taken here. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: dw: dmamux: fix OF node leak on route allocation failure
Make sure to drop the reference taken to the DMA master OF node also on
late route allocation failures. |
| The SupportCandy – Helpdesk & Customer Support Ticket System plugin for WordPress is vulnerable to SQL Injection via the Number-type custom field filter in all versions up to, and including, 3.4.4. This is due to insufficient escaping on the user-supplied operand value when using the equals operator and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Subscriber-level access and above (customers), to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
| The SupportCandy – Helpdesk & Customer Support Ticket System plugin for WordPress is vulnerable to Insecure Direct Object Reference in all versions up to, and including, 3.4.4 via the 'add_reply' function due to missing validation on a user controlled key. This makes it possible for authenticated attackers, with subscriber-level access and above, to steal file attachments uploaded by other users by specifying arbitrary attachment IDs in the 'description_attachments' parameter, re-associating those files to their own tickets and removing access from the original owners. |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix error handling in the init_task on load
If the init_task fails during a driver load, we end up without vports and
netdevs, effectively failing the entire process. In that state a
subsequent reset will result in a crash as the service task attempts to
access uninitialized resources. Following trace is from an error in the
init_task where the CREATE_VPORT (op 501) is rejected by the FW:
[40922.763136] idpf 0000:83:00.0: Device HW Reset initiated
[40924.449797] idpf 0000:83:00.0: Transaction failed (op 501)
[40958.148190] idpf 0000:83:00.0: HW reset detected
[40958.161202] BUG: kernel NULL pointer dereference, address: 00000000000000a8
...
[40958.168094] Workqueue: idpf-0000:83:00.0-vc_event idpf_vc_event_task [idpf]
[40958.168865] RIP: 0010:idpf_vc_event_task+0x9b/0x350 [idpf]
...
[40958.177932] Call Trace:
[40958.178491] <TASK>
[40958.179040] process_one_work+0x226/0x6d0
[40958.179609] worker_thread+0x19e/0x340
[40958.180158] ? __pfx_worker_thread+0x10/0x10
[40958.180702] kthread+0x10f/0x250
[40958.181238] ? __pfx_kthread+0x10/0x10
[40958.181774] ret_from_fork+0x251/0x2b0
[40958.182307] ? __pfx_kthread+0x10/0x10
[40958.182834] ret_from_fork_asm+0x1a/0x30
[40958.183370] </TASK>
Fix the error handling in the init_task to make sure the service and
mailbox tasks are disabled if the error happens during load. These are
started in idpf_vc_core_init(), which spawns the init_task and has no way
of knowing if it failed. If the error happens on reset, following
successful driver load, the tasks can still run, as that will allow the
netdevs to attempt recovery through another reset. Stop the PTP callbacks
either way as those will be restarted by the call to idpf_vc_core_init()
during a successful reset. |
| In the Linux kernel, the following vulnerability has been resolved:
net: marvell: prestera: fix NULL dereference on devlink_alloc() failure
devlink_alloc() may return NULL on allocation failure, but
prestera_devlink_alloc() unconditionally calls devlink_priv() on
the returned pointer.
This leads to a NULL pointer dereference if devlink allocation fails.
Add a check for a NULL devlink pointer and return NULL early to avoid
the crash. |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix memory leak in idpf_vc_core_deinit()
Make sure to free hw->lan_regs. Reported by kmemleak during reset:
unreferenced object 0xff1b913d02a936c0 (size 96):
comm "kworker/u258:14", pid 2174, jiffies 4294958305
hex dump (first 32 bytes):
00 00 00 c0 a8 ba 2d ff 00 00 00 00 00 00 00 00 ......-.........
00 00 40 08 00 00 00 00 00 00 25 b3 a8 ba 2d ff ..@.......%...-.
backtrace (crc 36063c4f):
__kmalloc_noprof+0x48f/0x890
idpf_vc_core_init+0x6ce/0x9b0 [idpf]
idpf_vc_event_task+0x1fb/0x350 [idpf]
process_one_work+0x226/0x6d0
worker_thread+0x19e/0x340
kthread+0x10f/0x250
ret_from_fork+0x251/0x2b0
ret_from_fork_asm+0x1a/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
idpf: fix memory leak in idpf_vport_rel()
Free vport->rx_ptype_lkup in idpf_vport_rel() to avoid leaking memory
during a reset. Reported by kmemleak:
unreferenced object 0xff450acac838a000 (size 4096):
comm "kworker/u258:5", pid 7732, jiffies 4296830044
hex dump (first 32 bytes):
00 00 00 00 00 10 00 00 00 10 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 10 00 00 00 00 00 00 ................
backtrace (crc 3da81902):
__kmalloc_cache_noprof+0x469/0x7a0
idpf_send_get_rx_ptype_msg+0x90/0x570 [idpf]
idpf_init_task+0x1ec/0x8d0 [idpf]
process_one_work+0x226/0x6d0
worker_thread+0x19e/0x340
kthread+0x10f/0x250
ret_from_fork+0x251/0x2b0
ret_from_fork_asm+0x1a/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: KVM: Fix kvm_device leak in kvm_pch_pic_destroy()
In kvm_ioctl_create_device(), kvm_device has allocated memory,
kvm_device->destroy() seems to be supposed to free its kvm_device
struct, but kvm_pch_pic_destroy() is not currently doing this, that
would lead to a memory leak.
So, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: KVM: Fix kvm_device leak in kvm_ipi_destroy()
In kvm_ioctl_create_device(), kvm_device has allocated memory,
kvm_device->destroy() seems to be supposed to free its kvm_device
struct, but kvm_ipi_destroy() is not currently doing this, that
would lead to a memory leak.
So, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: KVM: Fix kvm_device leak in kvm_eiointc_destroy()
In kvm_ioctl_create_device(), kvm_device has allocated memory,
kvm_device->destroy() seems to be supposed to free its kvm_device
struct, but kvm_eiointc_destroy() is not currently doing this, that
would lead to a memory leak.
So, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
can: gs_usb: gs_usb_receive_bulk_callback(): fix URB memory leak
In gs_can_open(), the URBs for USB-in transfers are allocated, added to the
parent->rx_submitted anchor and submitted. In the complete callback
gs_usb_receive_bulk_callback(), the URB is processed and resubmitted. In
gs_can_close() the URBs are freed by calling
usb_kill_anchored_urbs(parent->rx_submitted).
However, this does not take into account that the USB framework unanchors
the URB before the complete function is called. This means that once an
in-URB has been completed, it is no longer anchored and is ultimately not
released in gs_can_close().
Fix the memory leak by anchoring the URB in the
gs_usb_receive_bulk_callback() to the parent->rx_submitted anchor. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/userq: Fix fence reference leak on queue teardown v2
The user mode queue keeps a pointer to the most recent fence in
userq->last_fence. This pointer holds an extra dma_fence reference.
When the queue is destroyed, we free the fence driver and its xarray,
but we forgot to drop the last_fence reference.
Because of the missing dma_fence_put(), the last fence object can stay
alive when the driver unloads. This leaves an allocated object in the
amdgpu_userq_fence slab cache and triggers
This is visible during driver unload as:
BUG amdgpu_userq_fence: Objects remaining on __kmem_cache_shutdown()
kmem_cache_destroy amdgpu_userq_fence: Slab cache still has objects
Call Trace:
kmem_cache_destroy
amdgpu_userq_fence_slab_fini
amdgpu_exit
__do_sys_delete_module
Fix this by putting userq->last_fence and clearing the pointer during
amdgpu_userq_fence_driver_free().
This makes sure the fence reference is released and the slab cache is
empty when the module exits.
v2: Update to only release userq->last_fence with dma_fence_put()
(Christian)
(cherry picked from commit 8e051e38a8d45caf6a866d4ff842105b577953bb) |
| In the Linux kernel, the following vulnerability has been resolved:
can: etas_es58x: allow partial RX URB allocation to succeed
When es58x_alloc_rx_urbs() fails to allocate the requested number of
URBs but succeeds in allocating some, it returns an error code.
This causes es58x_open() to return early, skipping the cleanup label
'free_urbs', which leads to the anchored URBs being leaked.
As pointed out by maintainer Vincent Mailhol, the driver is designed
to handle partial URB allocation gracefully. Therefore, partial
allocation should not be treated as a fatal error.
Modify es58x_alloc_rx_urbs() to return 0 if at least one URB has been
allocated, restoring the intended behavior and preventing the leak
in es58x_open(). |
| In the Linux kernel, the following vulnerability has been resolved:
pnfs/flexfiles: Fix memory leak in nfs4_ff_alloc_deviceid_node()
In nfs4_ff_alloc_deviceid_node(), if the allocation for ds_versions fails,
the function jumps to the out_scratch label without freeing the already
allocated dsaddrs list, leading to a memory leak.
Fix this by jumping to the out_err_drain_dsaddrs label, which properly
frees the dsaddrs list before cleaning up other resources. |
| SunFounder Pironman Dashboard (pm_dashboard) version 1.3.13 and prior contain a path traversal vulnerability in the log file API endpoints. An unauthenticated remote attacker can supply traversal sequences via the filename parameter to read and delete arbitrary files. Successful exploitation can disclose sensitive information and delete critical system files, resulting in data loss and potential system compromise or denial of service. |
| An improper access control vulnerability exists in ASUS Secure Delete Driver of ASUS Business Manager. This vulnerability can be triggered by a local user sending a specially crafted request, potentially leading to the creation of arbitrary files in a specified path. Refer to the "Security Update for ASUS Business Manager" section on the ASUS Security Advisory for more information. |