| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mm/page_alloc: prevent pcp corruption with SMP=n
The kernel test robot has reported:
BUG: spinlock trylock failure on UP on CPU#0, kcompactd0/28
lock: 0xffff888807e35ef0, .magic: dead4ead, .owner: kcompactd0/28, .owner_cpu: 0
CPU: 0 UID: 0 PID: 28 Comm: kcompactd0 Not tainted 6.18.0-rc5-00127-ga06157804399 #1 PREEMPT 8cc09ef94dcec767faa911515ce9e609c45db470
Call Trace:
<IRQ>
__dump_stack (lib/dump_stack.c:95)
dump_stack_lvl (lib/dump_stack.c:123)
dump_stack (lib/dump_stack.c:130)
spin_dump (kernel/locking/spinlock_debug.c:71)
do_raw_spin_trylock (kernel/locking/spinlock_debug.c:?)
_raw_spin_trylock (include/linux/spinlock_api_smp.h:89 kernel/locking/spinlock.c:138)
__free_frozen_pages (mm/page_alloc.c:2973)
___free_pages (mm/page_alloc.c:5295)
__free_pages (mm/page_alloc.c:5334)
tlb_remove_table_rcu (include/linux/mm.h:? include/linux/mm.h:3122 include/asm-generic/tlb.h:220 mm/mmu_gather.c:227 mm/mmu_gather.c:290)
? __cfi_tlb_remove_table_rcu (mm/mmu_gather.c:289)
? rcu_core (kernel/rcu/tree.c:?)
rcu_core (include/linux/rcupdate.h:341 kernel/rcu/tree.c:2607 kernel/rcu/tree.c:2861)
rcu_core_si (kernel/rcu/tree.c:2879)
handle_softirqs (arch/x86/include/asm/jump_label.h:36 include/trace/events/irq.h:142 kernel/softirq.c:623)
__irq_exit_rcu (arch/x86/include/asm/jump_label.h:36 kernel/softirq.c:725)
irq_exit_rcu (kernel/softirq.c:741)
sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1052)
</IRQ>
<TASK>
RIP: 0010:_raw_spin_unlock_irqrestore (arch/x86/include/asm/preempt.h:95 include/linux/spinlock_api_smp.h:152 kernel/locking/spinlock.c:194)
free_pcppages_bulk (mm/page_alloc.c:1494)
drain_pages_zone (include/linux/spinlock.h:391 mm/page_alloc.c:2632)
__drain_all_pages (mm/page_alloc.c:2731)
drain_all_pages (mm/page_alloc.c:2747)
kcompactd (mm/compaction.c:3115)
kthread (kernel/kthread.c:465)
? __cfi_kcompactd (mm/compaction.c:3166)
? __cfi_kthread (kernel/kthread.c:412)
ret_from_fork (arch/x86/kernel/process.c:164)
? __cfi_kthread (kernel/kthread.c:412)
ret_from_fork_asm (arch/x86/entry/entry_64.S:255)
</TASK>
Matthew has analyzed the report and identified that in drain_page_zone()
we are in a section protected by spin_lock(&pcp->lock) and then get an
interrupt that attempts spin_trylock() on the same lock. The code is
designed to work this way without disabling IRQs and occasionally fail the
trylock with a fallback. However, the SMP=n spinlock implementation
assumes spin_trylock() will always succeed, and thus it's normally a
no-op. Here the enabled lock debugging catches the problem, but otherwise
it could cause a corruption of the pcp structure.
The problem has been introduced by commit 574907741599 ("mm/page_alloc:
leave IRQs enabled for per-cpu page allocations"). The pcp locking scheme
recognizes the need for disabling IRQs to prevent nesting spin_trylock()
sections on SMP=n, but the need to prevent the nesting in spin_lock() has
not been recognized. Fix it by introducing local wrappers that change the
spin_lock() to spin_lock_iqsave() with SMP=n and use them in all places
that do spin_lock(&pcp->lock).
[vbabka@suse.cz: add pcp_ prefix to the spin_lock_irqsave wrappers, per Steven] |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: lpc18xx-dmamux: fix device leak on route allocation
Make sure to drop the reference taken when looking up the DMA mux
platform device during route allocation.
Note that holding a reference to a device does not prevent its driver
data from going away so there is no point in keeping the reference. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: ti: dma-crossbar: fix device leak on am335x route allocation
Make sure to drop the reference taken when looking up the crossbar
platform device during am335x route allocation. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: release path before initializing extent tree in btrfs_read_locked_inode()
In btrfs_read_locked_inode() we are calling btrfs_init_file_extent_tree()
while holding a path with a read locked leaf from a subvolume tree, and
btrfs_init_file_extent_tree() may do a GFP_KERNEL allocation, which can
trigger reclaim.
This can create a circular lock dependency which lockdep warns about with
the following splat:
[6.1433] ======================================================
[6.1574] WARNING: possible circular locking dependency detected
[6.1583] 6.18.0+ #4 Tainted: G U
[6.1591] ------------------------------------------------------
[6.1599] kswapd0/117 is trying to acquire lock:
[6.1606] ffff8d9b6333c5b8 (&delayed_node->mutex){+.+.}-{3:3}, at: __btrfs_release_delayed_node.part.0+0x39/0x2f0
[6.1625]
but task is already holding lock:
[6.1633] ffffffffa4ab8ce0 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0x195/0xc60
[6.1646]
which lock already depends on the new lock.
[6.1657]
the existing dependency chain (in reverse order) is:
[6.1667]
-> #2 (fs_reclaim){+.+.}-{0:0}:
[6.1677] fs_reclaim_acquire+0x9d/0xd0
[6.1685] __kmalloc_cache_noprof+0x59/0x750
[6.1694] btrfs_init_file_extent_tree+0x90/0x100
[6.1702] btrfs_read_locked_inode+0xc3/0x6b0
[6.1710] btrfs_iget+0xbb/0xf0
[6.1716] btrfs_lookup_dentry+0x3c5/0x8e0
[6.1724] btrfs_lookup+0x12/0x30
[6.1731] lookup_open.isra.0+0x1aa/0x6a0
[6.1739] path_openat+0x5f7/0xc60
[6.1746] do_filp_open+0xd6/0x180
[6.1753] do_sys_openat2+0x8b/0xe0
[6.1760] __x64_sys_openat+0x54/0xa0
[6.1768] do_syscall_64+0x97/0x3e0
[6.1776] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[6.1784]
-> #1 (btrfs-tree-00){++++}-{3:3}:
[6.1794] lock_release+0x127/0x2a0
[6.1801] up_read+0x1b/0x30
[6.1808] btrfs_search_slot+0x8e0/0xff0
[6.1817] btrfs_lookup_inode+0x52/0xd0
[6.1825] __btrfs_update_delayed_inode+0x73/0x520
[6.1833] btrfs_commit_inode_delayed_inode+0x11a/0x120
[6.1842] btrfs_log_inode+0x608/0x1aa0
[6.1849] btrfs_log_inode_parent+0x249/0xf80
[6.1857] btrfs_log_dentry_safe+0x3e/0x60
[6.1865] btrfs_sync_file+0x431/0x690
[6.1872] do_fsync+0x39/0x80
[6.1879] __x64_sys_fsync+0x13/0x20
[6.1887] do_syscall_64+0x97/0x3e0
[6.1894] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[6.1903]
-> #0 (&delayed_node->mutex){+.+.}-{3:3}:
[6.1913] __lock_acquire+0x15e9/0x2820
[6.1920] lock_acquire+0xc9/0x2d0
[6.1927] __mutex_lock+0xcc/0x10a0
[6.1934] __btrfs_release_delayed_node.part.0+0x39/0x2f0
[6.1944] btrfs_evict_inode+0x20b/0x4b0
[6.1952] evict+0x15a/0x2f0
[6.1958] prune_icache_sb+0x91/0xd0
[6.1966] super_cache_scan+0x150/0x1d0
[6.1974] do_shrink_slab+0x155/0x6f0
[6.1981] shrink_slab+0x48e/0x890
[6.1988] shrink_one+0x11a/0x1f0
[6.1995] shrink_node+0xbfd/0x1320
[6.1002] balance_pgdat+0x67f/0xc60
[6.1321] kswapd+0x1dc/0x3e0
[6.1643] kthread+0xff/0x240
[6.1965] ret_from_fork+0x223/0x280
[6.1287] ret_from_fork_asm+0x1a/0x30
[6.1616]
other info that might help us debug this:
[6.1561] Chain exists of:
&delayed_node->mutex --> btrfs-tree-00 --> fs_reclaim
[6.1503] Possible unsafe locking scenario:
[6.1110] CPU0 CPU1
[6.1411] ---- ----
[6.1707] lock(fs_reclaim);
[6.1998] lock(btrfs-tree-00);
[6.1291] lock(fs_reclaim);
[6.1581] lock(&del
---truncated--- |
| The database account and password are hardcoded, allowing login with the account to manipulate the database in MagicInfo9 Server.This issue affects MagicINFO 9 Server: less than 21.1090.1. |
| A vulnerability in MagicInfo9 Server allows authorized users to upload HTML files without authentication, leading to Stored XSS, which can result in account takeover
This issue affects MagicINFO 9 Server: less than 21.1090.1. |
| DHCP Turbo 4.61298 contains an unquoted service path vulnerability that allows local attackers to potentially execute arbitrary code by exploiting the service binary path. Attackers can place malicious executables in the service path to gain elevated privileges when the service starts. |
| OpenCTI 3.3.1 is vulnerable to a reflected cross-site scripting (XSS) attack via the /graphql endpoint. An attacker can inject arbitrary JavaScript code by sending a crafted GET request with a malicious payload in the query string, leading to execution of JavaScript in the victim's browser. For example, a request to /graphql?'"--></style></scRipt><scRipt>alert('Raif_Berkay')</scRipt> will trigger an alert. This vulnerability was discovered by Raif Berkay Dincel and confirmed on Linux Mint and Windows 10. |
| A flaw was found in foreman_kubevirt. When configuring the connection to OpenShift, the system disables SSL verification if a Certificate Authority (CA) certificate is not explicitly set. This insecure default allows a remote attacker, capable of intercepting network traffic between Satellite and OpenShift, to perform a Man-in-the-Middle (MITM) attack. Such an attack could lead to the disclosure or alteration of sensitive information. |
| Online-Exam-System 2015 contains a time-based blind SQL injection vulnerability in the feedback form that allows attackers to extract database password hashes. Attackers can exploit the 'feed.php' endpoint by crafting malicious payload requests that use time delays to systematically enumerate user password characters. |
| BOOTP Turbo 2.0.1214 contains an unquoted service path vulnerability that allows local attackers to potentially execute arbitrary code with elevated system privileges. Attackers can exploit the unquoted executable path to inject malicious code that will be executed when the service starts with LocalSystem permissions. |
| WebMO Job Manager 20.0 contains a cross-site scripting vulnerability in search parameters that allows remote attackers to inject malicious script code. Attackers can exploit the filterSearch and filterSearchType parameters to perform non-persistent attacks including session hijacking and external redirects. |
| The Booking Calendar plugin for WordPress is vulnerable to unauthorized access of data due to a missing capability check on the wpbc_ajax_WPBC_FLEXTIMELINE_NAV() function in all versions up to, and including, 10.14.13. This makes it possible for unauthenticated attackers to retrieve booking information including customer names, phones and emails. |
| Avast SecureLine 5.5.522.0 contains an unquoted service path vulnerability that allows local users to potentially execute code with elevated system privileges. Attackers can exploit the unquoted path in the service configuration to inject malicious code that would execute with LocalSystem account permissions during service startup. |
| Frigate Professional 3.36.0.9 contains a local buffer overflow vulnerability in the 'Find Computer' feature that allows attackers to execute arbitrary code by overflowing the computer name input field. Attackers can craft a malicious payload that triggers a buffer overflow, enabling code execution and launching calculator as a proof of concept. |
| Veritas NetBackup 7.0 contains an unquoted service path vulnerability in the NetBackup INET Daemon service that allows local users to potentially execute arbitrary code. Attackers can exploit the unquoted path in C:\Program Files\Veritas\NetBackup\bin\bpinetd.exe to inject malicious code that would execute with elevated LocalSystem privileges. |
| Deep Instinct Windows Agent 1.2.29.0 contains an unquoted service path vulnerability in the DeepMgmtService that allows local users to potentially execute code with elevated privileges. Attackers can exploit the unquoted path in C:\Program Files\HP Sure Sense\DeepMgmtService.exe to inject malicious code that would execute with LocalSystem permissions during service startup. |
| Iskysoft Application Framework Service 2.4.3.241 contains an unquoted service path vulnerability that allows local users to potentially execute arbitrary code with elevated privileges. Attackers can exploit the unquoted path in the service configuration to inject malicious executables that would be run with the service's high-level system permissions. |
| SpyHunter 4 contains an unquoted service path vulnerability that allows local users to potentially execute arbitrary code with elevated system privileges. Attackers can exploit the unquoted service path by placing malicious executables in specific file system locations to gain elevated access during service startup. |
| TFTP Turbo 4.6.1273 contains an unquoted service path vulnerability that allows local attackers to potentially execute arbitrary code with elevated privileges. Attackers can exploit the unquoted path in the service configuration to inject malicious executables that will be launched with LocalSystem permissions. |