| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Node.js 0.8 before 0.8.28 and 0.10 before 0.10.30 does not consider the possibility of recursive processing that triggers V8 garbage collection in conjunction with a V8 interrupt, which allows remote attackers to cause a denial of service (memory corruption and application crash) via deep JSON objects whose parsing lets this interrupt mask an overflow of the program stack. |
| Multiple unspecified vulnerabilities in Google V8 before 3.24.35.10, as used in Google Chrome before 33.0.1750.146, allow attackers to cause a denial of service or possibly have other impact via unknown vectors. |
| The qs module before 1.0.0 in Node.js does not call the compact function for array data, which allows remote attackers to cause a denial of service (memory consumption) by using a large index value to create a sparse array. |
| The BasicJsonStringifier::SerializeJSArray function in json-stringifier.h in the JSON stringifier in Google V8, as used in Google Chrome before 47.0.2526.73, improperly loads array elements, which allows remote attackers to cause a denial of service (out-of-bounds memory access) or possibly have unspecified other impact via crafted JavaScript code. |
| Heap-based buffer overflow in the ares_create_query function in c-ares 1.x before 1.12.0 allows remote attackers to cause a denial of service (out-of-bounds write) or possibly execute arbitrary code via a hostname with an escaped trailing dot. |
| Integer overflow in the MDC2_Update function in crypto/mdc2/mdc2dgst.c in OpenSSL before 1.1.0 allows remote attackers to cause a denial of service (out-of-bounds write and application crash) or possibly have unspecified other impact via unknown vectors. |
| The Zone::New function in zone.cc in Google V8 before 5.0.71.47, as used in Google Chrome before 50.0.2661.102, does not properly determine when to expand certain memory allocations, which allows remote attackers to cause a denial of service (buffer overflow) or possibly have unspecified other impact via crafted JavaScript code. |
| Node.js 0.12.x before 0.12.9, 4.x before 4.2.3, and 5.x before 5.1.1 does not ensure the availability of a parser for each HTTP socket, which allows remote attackers to cause a denial of service (uncaughtException and service outage) via a pipelined HTTP request. |
| Google V8, as used in Google Chrome before 28.0.1500.95, allows remote attackers to cause a denial of service or possibly have unspecified other impact via vectors that leverage "type confusion." |
| The HTTP server in Node.js 0.10.x before 0.10.21 and 0.8.x before 0.8.26 allows remote attackers to cause a denial of service (memory and CPU consumption) by sending a large number of pipelined requests without reading the response. |
| The Update method in src/node_http_parser.cc in Node.js before 0.6.17 and 0.7 before 0.7.8 does not properly check the length of a string, which allows remote attackers to obtain sensitive information (request header contents) and possibly spoof HTTP headers via a zero length string. |
| Undici is an HTTP/1.1 client for Node.js. Prior to version 5.19.1, the `Headers.set()` and `Headers.append()` methods are vulnerable to Regular Expression Denial of Service (ReDoS) attacks when untrusted values are passed into the functions. This is due to the inefficient regular expression used to normalize the values in the `headerValueNormalize()` utility function. This vulnerability was patched in v5.19.1. No known workarounds are available. |
| Undici is an HTTP/1.1 client for Node.js. Starting with version 2.0.0 and prior to version 5.19.1, the undici library does not protect `host` HTTP header from CRLF injection vulnerabilities. This issue is patched in Undici v5.19.1. As a workaround, sanitize the `headers.host` string before passing to undici. |
| Undici is an HTTP/1.1 client, written from scratch for Node.js. Undici already cleared Authorization headers on cross-origin redirects, but did not clear `Proxy-Authentication` headers. This issue has been patched in versions 5.28.3 and 6.6.1. Users are advised to upgrade. There are no known workarounds for this vulnerability. |
| Undici is an HTTP/1.1 client, written from scratch for Node.js. In affected versions calling `fetch(url)` and not consuming the incoming body ((or consuming it very slowing) will lead to a memory leak. This issue has been addressed in version 6.6.1. Users are advised to upgrade. Users unable to upgrade should make sure to always consume the incoming body. |
| Undici is an HTTP/1.1 client written from scratch for Node.js. Prior to version 5.26.2, Undici already cleared Authorization headers on cross-origin redirects, but did not clear `Cookie` headers. By design, `cookie` headers are forbidden request headers, disallowing them to be set in RequestInit.headers in browser environments. Since undici handles headers more liberally than the spec, there was a disconnect from the assumptions the spec made, and undici's implementation of fetch. As such this may lead to accidental leakage of cookie to a third-party site or a malicious attacker who can control the redirection target (ie. an open redirector) to leak the cookie to the third party site. This was patched in version 5.26.2. There are no known workarounds. |
| Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. |
| Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both. |
| Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both. |
| Some HTTP/2 implementations are vulnerable to a header leak, potentially leading to a denial of service. The attacker sends a stream of headers with a 0-length header name and 0-length header value, optionally Huffman encoded into 1-byte or greater headers. Some implementations allocate memory for these headers and keep the allocation alive until the session dies. This can consume excess memory. |