| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Not used |
| Not used |
| Not used |
| Not used |
| Not used |
| Not used |
| Not used |
| Not used |
| An arbitrary file upload vulnerability exists in multiple WSO2 products due to improper input validation in the CarbonAppUploader admin service endpoint. An authenticated attacker with appropriate privileges can upload a malicious file to a user-controlled location on the server, potentially leading to remote code execution (RCE).
This functionality is restricted by default to admin users; therefore, successful exploitation requires valid credentials with administrative permissions. |
| The Socket Appender in Apache Log4j Core versions 2.0-beta9 through 2.25.2 does not perform TLS hostname verification of the peer certificate, even when the verifyHostName https://logging.apache.org/log4j/2.x/manual/appenders/network.html#SslConfiguration-attr-verifyHostName configuration attribute or the log4j2.sslVerifyHostName https://logging.apache.org/log4j/2.x/manual/systemproperties.html#log4j2.sslVerifyHostName system property is set to true.
This issue may allow a man-in-the-middle attacker to intercept or redirect log traffic under the following conditions:
* The attacker is able to intercept or redirect network traffic between the client and the log receiver.
* The attacker can present a server certificate issued by a certification authority trusted by the Socket Appender’s configured trust store (or by the default Java trust store if no custom trust store is configured).
Users are advised to upgrade to Apache Log4j Core version 2.25.3, which addresses this issue.
As an alternative mitigation, the Socket Appender may be configured to use a private or restricted trust root to limit the set of trusted certificates. |
| Mailpit is an email testing tool and API for developers. Prior to version 1.28.3, Mailpit's SMTP server is vulnerable to Header Injection due to an insufficient Regular Expression used to validate `RCPT TO` and `MAIL FROM` addresses. An attacker can inject arbitrary SMTP headers (or corrupt existing ones) by including carriage return characters (`\r`) in the email address. This header injection occurs because the regex intended to filter control characters fails to exclude `\r` and `\n` when used inside a character class. Version 1.28.3 fixes this issue. |
| An issue was discovered in OpenStack keystonemiddleware 10.5 through 10.7 before 10.7.2, 10.8 and 10.9 before 10.9.1, and 10.10 through 10.12 before 10.12.1. The external_oauth2_token middleware fails to sanitize incoming authentication headers before processing OAuth 2.0 tokens. By sending forged identity headers such as X-Is-Admin-Project, X-Roles, or X-User-Id, an authenticated attacker may escalate privileges or impersonate other users. All deployments using the external_oauth2_token middleware are affected. |
| The WP Import Export Lite plugin for WordPress is vulnerable to arbitrary file uploads due to missing file type validation in the 'wpie_tempalte_import' function in all versions up to, and including, 3.9.28. This makes it possible for authenticated attackers, with Subscriber-level access and above, and permissions granted by an Administrator, to upload arbitrary files on the affected site's server which may make remote code execution possible. |
| The WP Import Export Lite plugin for WordPress is vulnerable to arbitrary file uploads due to missing file type validation in the 'wpie_parse_upload_data' function in all versions up to, and including, 3.9.29. This makes it possible for authenticated attackers, with Subscriber-level access and above, and permissions granted by an Administrator, to upload arbitrary files on the affected site's server which may make remote code execution possible. The vulnerability was partially patched in version 3.9.29. |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in hexpm hexpm/hexpm ('Elixir.HexpmWeb.SharedAuthorizationView' modules) allows Cross-Site Scripting (XSS). This vulnerability is associated with program files lib/hexpm_web/views/shared_authorization_view.ex and program routines 'Elixir.HexpmWeb.SharedAuthorizationView':render_grouped_scopes/3.
This issue affects hexpm: from 617e44c71f1dd9043870205f371d375c5c4d886d before c692438684ead90c3bcbfb9ccf4e63c768c668a8, from pkg:github/hexpm/hexpm@617e44c71f1dd9043870205f371d375c5c4d886d before pkg:github/hexpm/hexpm@c692438684ead90c3bcbfb9ccf4e63c768c668a8; hex.pm: from 2025-10-01 before 2026-01-19. |
| A heap-based buffer overflow vulnerability in Fortinet FortiOS 7.6.0 through 7.6.3, FortiOS 7.4.0 through 7.4.8, FortiOS 7.2.0 through 7.2.11, FortiOS 7.0.0 through 7.0.17, FortiOS 6.4.0 through 6.4.16, FortiSwitchManager 7.2.0 through 7.2.6, FortiSwitchManager 7.0.0 through 7.0.5 allows attacker to execute unauthorized code or commands via specially crafted packets |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-pf: fix "UBSAN: shift-out-of-bounds error"
This patch ensures that the RX ring size (rx_pending) is not
set below the permitted length. This avoids UBSAN
shift-out-of-bounds errors when users passes small or zero
ring sizes via ethtool -G. |
| In the Linux kernel, the following vulnerability has been resolved:
media: adv7842: Avoid possible out-of-bounds array accesses in adv7842_cp_log_status()
It's possible for cp_read() and hdmi_read() to return -EIO. Those
values are further used as indexes for accessing arrays.
Fix that by checking return values where it's needed.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/irdma: avoid invalid read in irdma_net_event
irdma_net_event() should not dereference anything from "neigh" (alias
"ptr") until it has checked that the event is NETEVENT_NEIGH_UPDATE.
Other events come with different structures pointed to by "ptr" and they
may be smaller than struct neighbour.
Move the read of neigh->dev under the NETEVENT_NEIGH_UPDATE case.
The bug is mostly harmless, but it triggers KASAN on debug kernels:
BUG: KASAN: stack-out-of-bounds in irdma_net_event+0x32e/0x3b0 [irdma]
Read of size 8 at addr ffffc900075e07f0 by task kworker/27:2/542554
CPU: 27 PID: 542554 Comm: kworker/27:2 Kdump: loaded Not tainted 5.14.0-630.el9.x86_64+debug #1
Hardware name: [...]
Workqueue: events rt6_probe_deferred
Call Trace:
<IRQ>
dump_stack_lvl+0x60/0xb0
print_address_description.constprop.0+0x2c/0x3f0
print_report+0xb4/0x270
kasan_report+0x92/0xc0
irdma_net_event+0x32e/0x3b0 [irdma]
notifier_call_chain+0x9e/0x180
atomic_notifier_call_chain+0x5c/0x110
rt6_do_redirect+0xb91/0x1080
tcp_v6_err+0xe9b/0x13e0
icmpv6_notify+0x2b2/0x630
ndisc_redirect_rcv+0x328/0x530
icmpv6_rcv+0xc16/0x1360
ip6_protocol_deliver_rcu+0xb84/0x12e0
ip6_input_finish+0x117/0x240
ip6_input+0xc4/0x370
ipv6_rcv+0x420/0x7d0
__netif_receive_skb_one_core+0x118/0x1b0
process_backlog+0xd1/0x5d0
__napi_poll.constprop.0+0xa3/0x440
net_rx_action+0x78a/0xba0
handle_softirqs+0x2d4/0x9c0
do_softirq+0xad/0xe0
</IRQ> |
| In the Linux kernel, the following vulnerability has been resolved:
smc91x: fix broken irq-context in PREEMPT_RT
When smc91x.c is built with PREEMPT_RT, the following splat occurs
in FVP_RevC:
[ 13.055000] smc91x LNRO0003:00 eth0: link up, 10Mbps, half-duplex, lpa 0x0000
[ 13.062137] BUG: workqueue leaked atomic, lock or RCU: kworker/2:1[106]
[ 13.062137] preempt=0x00000000 lock=0->0 RCU=0->1 workfn=mld_ifc_work
[ 13.062266] C
** replaying previous printk message **
[ 13.062266] CPU: 2 UID: 0 PID: 106 Comm: kworker/2:1 Not tainted 6.18.0-dirty #179 PREEMPT_{RT,(full)}
[ 13.062353] Hardware name: , BIOS
[ 13.062382] Workqueue: mld mld_ifc_work
[ 13.062469] Call trace:
[ 13.062494] show_stack+0x24/0x40 (C)
[ 13.062602] __dump_stack+0x28/0x48
[ 13.062710] dump_stack_lvl+0x7c/0xb0
[ 13.062818] dump_stack+0x18/0x34
[ 13.062926] process_scheduled_works+0x294/0x450
[ 13.063043] worker_thread+0x260/0x3d8
[ 13.063124] kthread+0x1c4/0x228
[ 13.063235] ret_from_fork+0x10/0x20
This happens because smc_special_trylock() disables IRQs even on PREEMPT_RT,
but smc_special_unlock() does not restore IRQs on PREEMPT_RT.
The reason is that smc_special_unlock() calls spin_unlock_irqrestore(),
and rcu_read_unlock_bh() in __dev_queue_xmit() cannot invoke
rcu_read_unlock() through __local_bh_enable_ip() when current->softirq_disable_cnt becomes zero.
To address this issue, replace smc_special_trylock() with spin_trylock_irqsave(). |