| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Improper neutralization of special elements used in an sql command ('sql injection') in Microsoft Office SharePoint allows an authorized attacker to execute code over a network. |
| Untrusted pointer dereference in Microsoft Office Word allows an unauthorized attacker to execute code locally. |
| Improper access control in Microsoft Office Excel allows an unauthorized attacker to bypass a security feature locally. |
| tarteaucitron.js is a compliant and accessible cookie banner. Prior to 1.29.0, a Regular Expression Denial of Service (ReDoS) vulnerability was identified in tarteaucitron.js in the handling of the issuu_id parameter. This vulnerability is fixed in 1.29.0. |
| iccDEV provides a set of libraries and tools that allow for the interaction, manipulation, and application of International Color Consortium (ICC) color management profiles. Prior to 2.3.1.2, There is a heap-based buffer overflow in SIccCalcOp::Describe() at IccProfLib/IccMpeCalc.cpp. This vulnerability affects users of the iccDEV library who process ICC color profiles. The vulnerability is fixed in 2.3.1.2. |
| GuardDog is a CLI tool to identify malicious PyPI packages. Prior to 2.7.1, GuardDog's safe_extract() function does not validate decompressed file sizes when extracting ZIP archives (wheels, eggs), allowing attackers to cause denial of service through zip bombs. A malicious package can consume gigabytes of disk space from a few megabytes of compressed data. This vulnerability is fixed in 2.7.1. |
| An exposure of sensitive information to an unauthorized actor [CWE-200] vulnerability in Fortinet FortiFone 7.0.0 through 7.0.1, FortiFone 3.0.13 through 3.0.23 allows an unauthenticated attacker to obtain the device configuration via crafted HTTP or HTTPS requests. |
| Allocation of Resources Without Limits or Throttling (CWE-770) in Kibana Fleet can lead to Excessive Allocation (CAPEC-130) via a specially crafted request. This causes the application to perform redundant processing operations that continuously consume system resources until service degradation or complete unavailability occurs. |
| Allocation of Resources Without Limits or Throttling (CWE-770) in Kibana Fleet can lead to Excessive Allocation (CAPEC-130) via a specially crafted bulk retrieval request. This requires an attacker to have low-level privileges equivalent to the viewer role, which grants read access to agent policies. The crafted request can cause the application to perform redundant database retrieval operations that immediately consume memory until the server crashes and becomes unavailable to all users. |
| Jervis is a library for Job DSL plugin scripts and shared Jenkins pipeline libraries. Prior to 2.2, Jervis uses deterministic AES IV derivation from a passphrase. This vulnerability is fixed in 2.2. |
| Jervis is a library for Job DSL plugin scripts and shared Jenkins pipeline libraries. Prior to 2.2, Jervis uses padLeft(32, '0') when it should use padLeft(64, '0') because SHA-256 produces 32 bytes which equates to 64 hex characters. This vulnerability is fixed in 2.2. |
| Exposure of sensitive information to an unauthorized actor in Windows File Explorer allows an authorized attacker to disclose information locally. |
| openCryptoki is a PKCS#11 library and tools for Linux and AIX. In 3.25.0 and 3.26.0, there is a heap buffer overflow vulnerability in the CKM_ECDH_AES_KEY_WRAP implementation allows an attacker with local access to cause out-of-bounds writes in the host process by supplying a compressed EC public key and invoking C_WrapKey. This can lead to heap corruption, or denial-of-service. |
| Authenticated command injection vulnerabilities exist in the web-based management interface of mobility conductors running AOS-8 operating system. Successful exploitation could allow an authenticated malicious actor to execute arbitrary commands as a privileged user on the underlying operating system. |
| Authenticated command injection vulnerabilities exist in the web-based management interface of mobility conductors running AOS-8 operating system. Successful exploitation could allow an authenticated malicious actor to execute arbitrary commands as a privileged user on the underlying operating system. |
| An improper input handling vulnerability exists in the web-based management interface of mobility conductors running either AOS-10 or AOS-8 operating systems. Successful exploitation could allow an authenticated malicious actor with valid credentials to trigger unintended behavior on the affected system. |
| Authenticated arbitrary file write vulnerability exists in the web-based management interface of mobility conductors running either AOS-10 or AOS-8 operating systems. Successful exploitation could allow an authenticated malicious actor to create or modify arbitrary files and execute arbitrary commands as a privileged user on the underlying operating system. |
| Software installed and run as a non-privileged user may conduct improper GPU system calls to cause mismanagement of resources reference counting creating a potential use after free scenario.
Improper resource management and reference counting on an internal resource caused scenario where potential write use after free was present. |
| In the Linux kernel, the following vulnerability has been resolved:
scs: fix a wrong parameter in __scs_magic
__scs_magic() needs a 'void *' variable, but a 'struct task_struct *' is
given. 'task_scs(tsk)' is the starting address of the task's shadow call
stack, and '__scs_magic(task_scs(tsk))' is the end address of the task's
shadow call stack. Here should be '__scs_magic(task_scs(tsk))'.
The user-visible effect of this bug is that when CONFIG_DEBUG_STACK_USAGE
is enabled, the shadow call stack usage checking function
(scs_check_usage) would scan an incorrect memory range. This could lead
1. **Inaccurate stack usage reporting**: The function would calculate
wrong usage statistics for the shadow call stack, potentially showing
incorrect value in kmsg.
2. **Potential kernel crash**: If the value of __scs_magic(tsk)is
greater than that of __scs_magic(task_scs(tsk)), the for loop may
access unmapped memory, potentially causing a kernel panic. However,
this scenario is unlikely because task_struct is allocated via the slab
allocator (which typically returns lower addresses), while the shadow
call stack returned by task_scs(tsk) is allocated via vmalloc(which
typically returns higher addresses).
However, since this is purely a debugging feature
(CONFIG_DEBUG_STACK_USAGE), normal production systems should be not
unaffected. The bug only impacts developers and testers who are actively
debugging stack usage with this configuration enabled. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: samsung: exynos-clkout: Assign .num before accessing .hws
Commit f316cdff8d67 ("clk: Annotate struct clk_hw_onecell_data with
__counted_by") annotated the hws member of 'struct clk_hw_onecell_data'
with __counted_by, which informs the bounds sanitizer (UBSAN_BOUNDS)
about the number of elements in .hws[], so that it can warn when .hws[]
is accessed out of bounds. As noted in that change, the __counted_by
member must be initialized with the number of elements before the first
array access happens, otherwise there will be a warning from each access
prior to the initialization because the number of elements is zero. This
occurs in exynos_clkout_probe() due to .num being assigned after .hws[]
has been accessed:
UBSAN: array-index-out-of-bounds in drivers/clk/samsung/clk-exynos-clkout.c:178:18
index 0 is out of range for type 'clk_hw *[*]'
Move the .num initialization to before the first access of .hws[],
clearing up the warning. |