| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
usb: renesas_usbhs: Fix synchronous external abort on unbind
A synchronous external abort occurs on the Renesas RZ/G3S SoC if unbind is
executed after the configuration sequence described above:
modprobe usb_f_ecm
modprobe libcomposite
modprobe configfs
cd /sys/kernel/config/usb_gadget
mkdir -p g1
cd g1
echo "0x1d6b" > idVendor
echo "0x0104" > idProduct
mkdir -p strings/0x409
echo "0123456789" > strings/0x409/serialnumber
echo "Renesas." > strings/0x409/manufacturer
echo "Ethernet Gadget" > strings/0x409/product
mkdir -p functions/ecm.usb0
mkdir -p configs/c.1
mkdir -p configs/c.1/strings/0x409
echo "ECM" > configs/c.1/strings/0x409/configuration
if [ ! -L configs/c.1/ecm.usb0 ]; then
ln -s functions/ecm.usb0 configs/c.1
fi
echo 11e20000.usb > UDC
echo 11e20000.usb > /sys/bus/platform/drivers/renesas_usbhs/unbind
The displayed trace is as follows:
Internal error: synchronous external abort: 0000000096000010 [#1] SMP
CPU: 0 UID: 0 PID: 188 Comm: sh Tainted: G M 6.17.0-rc7-next-20250922-00010-g41050493b2bd #55 PREEMPT
Tainted: [M]=MACHINE_CHECK
Hardware name: Renesas SMARC EVK version 2 based on r9a08g045s33 (DT)
pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : usbhs_sys_function_pullup+0x10/0x40 [renesas_usbhs]
lr : usbhsg_update_pullup+0x3c/0x68 [renesas_usbhs]
sp : ffff8000838b3920
x29: ffff8000838b3920 x28: ffff00000d585780 x27: 0000000000000000
x26: 0000000000000000 x25: 0000000000000000 x24: ffff00000c3e3810
x23: ffff00000d5e5c80 x22: ffff00000d5e5d40 x21: 0000000000000000
x20: 0000000000000000 x19: ffff00000d5e5c80 x18: 0000000000000020
x17: 2e30303230316531 x16: 312d7968703a7968 x15: 3d454d414e5f4344
x14: 000000000000002c x13: 0000000000000000 x12: 0000000000000000
x11: ffff00000f358f38 x10: ffff00000f358db0 x9 : ffff00000b41f418
x8 : 0101010101010101 x7 : 7f7f7f7f7f7f7f7f x6 : fefefeff6364626d
x5 : 8080808000000000 x4 : 000000004b5ccb9d x3 : 0000000000000000
x2 : 0000000000000000 x1 : ffff800083790000 x0 : ffff00000d5e5c80
Call trace:
usbhs_sys_function_pullup+0x10/0x40 [renesas_usbhs] (P)
usbhsg_pullup+0x4c/0x7c [renesas_usbhs]
usb_gadget_disconnect_locked+0x48/0xd4
gadget_unbind_driver+0x44/0x114
device_remove+0x4c/0x80
device_release_driver_internal+0x1c8/0x224
device_release_driver+0x18/0x24
bus_remove_device+0xcc/0x10c
device_del+0x14c/0x404
usb_del_gadget+0x88/0xc0
usb_del_gadget_udc+0x18/0x30
usbhs_mod_gadget_remove+0x24/0x44 [renesas_usbhs]
usbhs_mod_remove+0x20/0x30 [renesas_usbhs]
usbhs_remove+0x98/0xdc [renesas_usbhs]
platform_remove+0x20/0x30
device_remove+0x4c/0x80
device_release_driver_internal+0x1c8/0x224
device_driver_detach+0x18/0x24
unbind_store+0xb4/0xb8
drv_attr_store+0x24/0x38
sysfs_kf_write+0x7c/0x94
kernfs_fop_write_iter+0x128/0x1b8
vfs_write+0x2ac/0x350
ksys_write+0x68/0xfc
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x48/0x110
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x34/0xf0
el0t_64_sync_handler+0xa0/0xe4
el0t_64_sync+0x198/0x19c
Code: 7100003f 1a9f07e1 531c6c22 f9400001 (79400021)
---[ end trace 0000000000000000 ]---
note: sh[188] exited with irqs disabled
note: sh[188] exited with preempt_count 1
The issue occurs because usbhs_sys_function_pullup(), which accesses the IP
registers, is executed after the USBHS clocks have been disabled. The
problem is reproducible on the Renesas RZ/G3S SoC starting with the
addition of module stop in the clock enable/disable APIs. With module stop
functionality enabled, a bus error is expected if a master accesses a
module whose clock has been stopped and module stop activated.
Disable the IP clocks at the end of remove. |
| The "Amazon affiliate lite Plugin" plugin for WordPress is vulnerable to Stored Cross-Site Scripting via admin settings in all versions up to, and including, 1.0.0 due to insufficient input sanitization and output escaping. This makes it possible for authenticated attackers, with administrator-level permissions and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. This only affects multi-site installations and installations where unfiltered_html has been disabled. |
| Iframe injection vulnerability in airc.pt/solucoes-servicos.solucoes MyNET v.26.06 and before allows a remote attacker to execute arbitrary code via the src parameter. |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Hotech Software Inc. Otello allows Stored XSS.This issue affects Otello: from 2.4.0 before 2.4.4. |
| MyNET up to v26.05 was discovered to contain a reflected cross-site scripting (XSS) vulnerability via the msg parameter. |
| MyNET up to v26.08 was discovered to contain a Reflected cross-site scripting (XSS) vulnerability via the msgtipo parameter. |
| In the Linux kernel, the following vulnerability has been resolved:
atm/fore200e: Fix possible data race in fore200e_open()
Protect access to fore200e->available_cell_rate with rate_mtx lock in the
error handling path of fore200e_open() to prevent a data race.
The field fore200e->available_cell_rate is a shared resource used to track
available bandwidth. It is concurrently accessed by fore200e_open(),
fore200e_close(), and fore200e_change_qos().
In fore200e_open(), the lock rate_mtx is correctly held when subtracting
vcc->qos.txtp.max_pcr from available_cell_rate to reserve bandwidth.
However, if the subsequent call to fore200e_activate_vcin() fails, the
function restores the reserved bandwidth by adding back to
available_cell_rate without holding the lock.
This introduces a race condition because available_cell_rate is a global
device resource shared across all VCCs. If the error path in
fore200e_open() executes concurrently with operations like
fore200e_close() or fore200e_change_qos() on other VCCs, a
read-modify-write race occurs.
Specifically, the error path reads the rate without the lock. If another
CPU acquires the lock and modifies the rate (e.g., releasing bandwidth in
fore200e_close()) between this read and the subsequent write, the error
path will overwrite the concurrent update with a stale value. This results
in incorrect bandwidth accounting. |
| In the Linux kernel, the following vulnerability has been resolved:
team: Move team device type change at the end of team_port_add
Attempting to add a port device that is already up will expectedly fail,
but not before modifying the team device header_ops.
In the case of the syzbot reproducer the gre0 device is
already in state UP when it attempts to add it as a
port device of team0, this fails but before that
header_ops->create of team0 is changed from eth_header to ipgre_header
in the call to team_dev_type_check_change.
Later when we end up in ipgre_header() struct ip_tunnel* points to nonsense
as the private data of the device still holds a struct team.
Example sequence of iproute2 commands to reproduce the hang/BUG():
ip link add dev team0 type team
ip link add dev gre0 type gre
ip link set dev gre0 up
ip link set dev gre0 master team0
ip link set dev team0 up
ping -I team0 1.1.1.1
Move team_dev_type_check_change down where all other checks have passed
as it changes the dev type with no way to restore it in case
one of the checks that follow it fail.
Also make sure to preserve the origial mtu assignment:
- If port_dev is not the same type as dev, dev takes mtu from port_dev
- If port_dev is the same type as dev, port_dev takes mtu from dev
This is done by adding a conditional before the call to dev_set_mtu
to prevent it from assigning port_dev->mtu = dev->mtu and instead
letting team_dev_type_check_change assign dev->mtu = port_dev->mtu.
The conditional is needed because the patch moves the call to
team_dev_type_check_change past dev_set_mtu.
Testing:
- team device driver in-tree selftests
- Add/remove various devices as slaves of team device
- syzbot |
| In the Linux kernel, the following vulnerability has been resolved:
veth: reduce XDP no_direct return section to fix race
As explain in commit fa349e396e48 ("veth: Fix race with AF_XDP exposing
old or uninitialized descriptors") for veth there is a chance after
napi_complete_done() that another CPU can manage start another NAPI
instance running veth_pool(). For NAPI this is correctly handled as the
napi_schedule_prep() check will prevent multiple instances from getting
scheduled, but for the remaining code in veth_pool() this can run
concurrent with the newly started NAPI instance.
The problem/race is that xdp_clear_return_frame_no_direct() isn't
designed to be nested.
Prior to commit 401cb7dae813 ("net: Reference bpf_redirect_info via
task_struct on PREEMPT_RT.") the temporary BPF net context
bpf_redirect_info was stored per CPU, where this wasn't an issue. Since
this commit the BPF context is stored in 'current' task_struct. When
running veth in threaded-NAPI mode, then the kthread becomes the storage
area. Now a race exists between two concurrent veth_pool() function calls
one exiting NAPI and one running new NAPI, both using the same BPF net
context.
Race is when another CPU gets within the xdp_set_return_frame_no_direct()
section before exiting veth_pool() calls the clear-function
xdp_clear_return_frame_no_direct(). |
| In the Linux kernel, the following vulnerability has been resolved:
can: gs_usb: gs_usb_receive_bulk_callback(): check actual_length before accessing data
The URB received in gs_usb_receive_bulk_callback() contains a struct
gs_host_frame. The length of the data after the header depends on the
gs_host_frame hf::flags and the active device features (e.g. time
stamping).
Introduce a new function gs_usb_get_minimum_length() and check that we have
at least received the required amount of data before accessing it. Only
copy the data to that skb that has actually been received.
[mkl: rename gs_usb_get_minimum_length() -> +gs_usb_get_minimum_rx_length()] |
| In the Linux kernel, the following vulnerability has been resolved:
can: gs_usb: gs_usb_receive_bulk_callback(): check actual_length before accessing header
The driver expects to receive a struct gs_host_frame in
gs_usb_receive_bulk_callback().
Use struct_group to describe the header of the struct gs_host_frame and
check that we have at least received the header before accessing any
members of it.
To resubmit the URB, do not dereference the pointer chain
"dev->parent->hf_size_rx" but use "parent->hf_size_rx" instead. Since
"urb->context" contains "parent", it is always defined, while "dev" is not
defined if the URB it too short. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/guc: Fix stack_depot usage
Add missing stack_depot_init() call when CONFIG_DRM_XE_DEBUG_GUC is
enabled to fix the following call stack:
[] BUG: kernel NULL pointer dereference, address: 0000000000000000
[] Workqueue: drm_sched_run_job_work [gpu_sched]
[] RIP: 0010:stack_depot_save_flags+0x172/0x870
[] Call Trace:
[] <TASK>
[] fast_req_track+0x58/0xb0 [xe]
(cherry picked from commit 64fdf496a6929a0a194387d2bb5efaf5da2b542f) |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: stratix10-svc: fix bug in saving controller data
Fix the incorrect usage of platform_set_drvdata and dev_set_drvdata. They
both are of the same data and overrides each other. This resulted in the
rmmod of the svc driver to fail and throw a kernel panic for kthread_stop
and fifo free. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix WARN_ON in tracing_buffers_mmap_close for split VMAs
When a VMA is split (e.g., by partial munmap or MAP_FIXED), the kernel
calls vm_ops->close on each portion. For trace buffer mappings, this
results in ring_buffer_unmap() being called multiple times while
ring_buffer_map() was only called once.
This causes ring_buffer_unmap() to return -ENODEV on subsequent calls
because user_mapped is already 0, triggering a WARN_ON.
Trace buffer mappings cannot support partial mappings because the ring
buffer structure requires the complete buffer including the meta page.
Fix this by adding a may_split callback that returns -EINVAL to prevent
VMA splits entirely. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: accel: bmc150: Fix irq assumption regression
The code in bmc150-accel-core.c unconditionally calls
bmc150_accel_set_interrupt() in the iio_buffer_setup_ops,
such as on the runtime PM resume path giving a kernel
splat like this if the device has no interrupts:
Unable to handle kernel NULL pointer dereference at virtual
address 00000001 when read
PC is at bmc150_accel_set_interrupt+0x98/0x194
LR is at __pm_runtime_resume+0x5c/0x64
(...)
Call trace:
bmc150_accel_set_interrupt from bmc150_accel_buffer_postenable+0x40/0x108
bmc150_accel_buffer_postenable from __iio_update_buffers+0xbe0/0xcbc
__iio_update_buffers from enable_store+0x84/0xc8
enable_store from kernfs_fop_write_iter+0x154/0x1b4
This bug seems to have been in the driver since the beginning,
but it only manifests recently, I do not know why.
Store the IRQ number in the state struct, as this is a common
pattern in other drivers, then use this to determine if we have
IRQ support or not. |
| In the Linux kernel, the following vulnerability has been resolved:
sched_ext: Fix possible deadlock in the deferred_irq_workfn()
For PREEMPT_RT=y kernels, the deferred_irq_workfn() is executed in
the per-cpu irq_work/* task context and not disable-irq, if the rq
returned by container_of() is current CPU's rq, the following scenarios
may occur:
lock(&rq->__lock);
<Interrupt>
lock(&rq->__lock);
This commit use IRQ_WORK_INIT_HARD() to replace init_irq_work() to
initialize rq->scx.deferred_irq_work, make the deferred_irq_workfn()
is always invoked in hard-irq context. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86/amd/pmc: Add support for Van Gogh SoC
The ROG Xbox Ally (non-X) SoC features a similar architecture to the
Steam Deck. While the Steam Deck supports S3 (s2idle causes a crash),
this support was dropped by the Xbox Ally which only S0ix suspend.
Since the handler is missing here, this causes the device to not suspend
and the AMD GPU driver to crash while trying to resume afterwards due to
a power hang. |
| FastAPI Users allows users to quickly add a registration and authentication system to their FastAPI project. Prior to version 15.0.2, the OAuth login state tokens are completely stateless and carry no per-request entropy or any data that could link them to the session that initiated the OAuth flow. `generate_state_token()` is always called with an empty `state_data` dict, so the resulting JWT only contains the fixed audience claim plus an expiration timestamp. On callback, the library merely checks that the JWT verifies under `state_secret` and is unexpired; there is no attempt to match the state value to the browser that initiated the OAuth request, no correlation cookie, and no server-side cache. Any attacker can hit `/authorize`, capture the server-generated state, finish the upstream OAuth flow with their own provider account, and then trick a victim into loading `.../callback?code=<attacker_code>&state=<attacker_state>`. Because the state JWT is valid for any client for \~1 hour, the victim’s browser will complete the flow. This leads to login CSRF. Depending on the app’s logic, the login CSRF can lead to an account takeover of the victim account or to the victim user getting logged in to the attacker's account. Version 15.0.2 contains a patch for the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
locking/spinlock/debug: Fix data-race in do_raw_write_lock
KCSAN reports:
BUG: KCSAN: data-race in do_raw_write_lock / do_raw_write_lock
write (marked) to 0xffff800009cf504c of 4 bytes by task 1102 on cpu 1:
do_raw_write_lock+0x120/0x204
_raw_write_lock_irq
do_exit
call_usermodehelper_exec_async
ret_from_fork
read to 0xffff800009cf504c of 4 bytes by task 1103 on cpu 0:
do_raw_write_lock+0x88/0x204
_raw_write_lock_irq
do_exit
call_usermodehelper_exec_async
ret_from_fork
value changed: 0xffffffff -> 0x00000001
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 1103 Comm: kworker/u4:1 6.1.111
Commit 1a365e822372 ("locking/spinlock/debug: Fix various data races") has
adressed most of these races, but seems to be not consistent/not complete.
>From do_raw_write_lock() only debug_write_lock_after() part has been
converted to WRITE_ONCE(), but not debug_write_lock_before() part.
Do it now. |
| In the Linux kernel, the following vulnerability has been resolved:
jbd2: avoid bug_on in jbd2_journal_get_create_access() when file system corrupted
There's issue when file system corrupted:
------------[ cut here ]------------
kernel BUG at fs/jbd2/transaction.c:1289!
Oops: invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 5 UID: 0 PID: 2031 Comm: mkdir Not tainted 6.18.0-rc1-next
RIP: 0010:jbd2_journal_get_create_access+0x3b6/0x4d0
RSP: 0018:ffff888117aafa30 EFLAGS: 00010202
RAX: 0000000000000000 RBX: ffff88811a86b000 RCX: ffffffff89a63534
RDX: 1ffff110200ec602 RSI: 0000000000000004 RDI: ffff888100763010
RBP: ffff888100763000 R08: 0000000000000001 R09: ffff888100763028
R10: 0000000000000003 R11: 0000000000000000 R12: 0000000000000000
R13: ffff88812c432000 R14: ffff88812c608000 R15: ffff888120bfc000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f91d6970c99 CR3: 00000001159c4000 CR4: 00000000000006f0
Call Trace:
<TASK>
__ext4_journal_get_create_access+0x42/0x170
ext4_getblk+0x319/0x6f0
ext4_bread+0x11/0x100
ext4_append+0x1e6/0x4a0
ext4_init_new_dir+0x145/0x1d0
ext4_mkdir+0x326/0x920
vfs_mkdir+0x45c/0x740
do_mkdirat+0x234/0x2f0
__x64_sys_mkdir+0xd6/0x120
do_syscall_64+0x5f/0xfa0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The above issue occurs with us in errors=continue mode when accompanied by
storage failures. There have been many inconsistencies in the file system
data.
In the case of file system data inconsistency, for example, if the block
bitmap of a referenced block is not set, it can lead to the situation where
a block being committed is allocated and used again. As a result, the
following condition will not be satisfied then trigger BUG_ON. Of course,
it is entirely possible to construct a problematic image that can trigger
this BUG_ON through specific operations. In fact, I have constructed such
an image and easily reproduced this issue.
Therefore, J_ASSERT() holds true only under ideal conditions, but it may
not necessarily be satisfied in exceptional scenarios. Using J_ASSERT()
directly in abnormal situations would cause the system to crash, which is
clearly not what we want. So here we directly trigger a JBD abort instead
of immediately invoking BUG_ON. |