Search

Search Results (325111 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50734 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: nvmem: core: Fix memleak in nvmem_register() dev_set_name will alloc memory for nvmem->dev.kobj.name in nvmem_register, when nvmem_validate_keepouts failed, nvmem's memory will be freed and return, but nobody will free memory for nvmem->dev.kobj.name, there will be memleak, so moving nvmem_validate_keepouts() after device_register() and let the device core deal with cleaning name in error cases.
CVE-2022-50752 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md/raid5: Remove unnecessary bio_put() in raid5_read_one_chunk() When running chunk-sized reads on disks with badblocks duplicate bio free/puts are observed: ============================================================================= BUG bio-200 (Not tainted): Object already free ----------------------------------------------------------------------------- Allocated in mempool_alloc_slab+0x17/0x20 age=3 cpu=2 pid=7504 __slab_alloc.constprop.0+0x5a/0xb0 kmem_cache_alloc+0x31e/0x330 mempool_alloc_slab+0x17/0x20 mempool_alloc+0x100/0x2b0 bio_alloc_bioset+0x181/0x460 do_mpage_readpage+0x776/0xd00 mpage_readahead+0x166/0x320 blkdev_readahead+0x15/0x20 read_pages+0x13f/0x5f0 page_cache_ra_unbounded+0x18d/0x220 force_page_cache_ra+0x181/0x1c0 page_cache_sync_ra+0x65/0xb0 filemap_get_pages+0x1df/0xaf0 filemap_read+0x1e1/0x700 blkdev_read_iter+0x1e5/0x330 vfs_read+0x42a/0x570 Freed in mempool_free_slab+0x17/0x20 age=3 cpu=2 pid=7504 kmem_cache_free+0x46d/0x490 mempool_free_slab+0x17/0x20 mempool_free+0x66/0x190 bio_free+0x78/0x90 bio_put+0x100/0x1a0 raid5_make_request+0x2259/0x2450 md_handle_request+0x402/0x600 md_submit_bio+0xd9/0x120 __submit_bio+0x11f/0x1b0 submit_bio_noacct_nocheck+0x204/0x480 submit_bio_noacct+0x32e/0xc70 submit_bio+0x98/0x1a0 mpage_readahead+0x250/0x320 blkdev_readahead+0x15/0x20 read_pages+0x13f/0x5f0 page_cache_ra_unbounded+0x18d/0x220 Slab 0xffffea000481b600 objects=21 used=0 fp=0xffff8881206d8940 flags=0x17ffffc0010201(locked|slab|head|node=0|zone=2|lastcpupid=0x1fffff) CPU: 0 PID: 34525 Comm: kworker/u24:2 Not tainted 6.0.0-rc2-localyes-265166-gf11c5343fa3f #143 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Workqueue: raid5wq raid5_do_work Call Trace: <TASK> dump_stack_lvl+0x5a/0x78 dump_stack+0x10/0x16 print_trailer+0x158/0x165 object_err+0x35/0x50 free_debug_processing.cold+0xb7/0xbe __slab_free+0x1ae/0x330 kmem_cache_free+0x46d/0x490 mempool_free_slab+0x17/0x20 mempool_free+0x66/0x190 bio_free+0x78/0x90 bio_put+0x100/0x1a0 mpage_end_io+0x36/0x150 bio_endio+0x2fd/0x360 md_end_io_acct+0x7e/0x90 bio_endio+0x2fd/0x360 handle_failed_stripe+0x960/0xb80 handle_stripe+0x1348/0x3760 handle_active_stripes.constprop.0+0x72a/0xaf0 raid5_do_work+0x177/0x330 process_one_work+0x616/0xb20 worker_thread+0x2bd/0x6f0 kthread+0x179/0x1b0 ret_from_fork+0x22/0x30 </TASK> The double free is caused by an unnecessary bio_put() in the if(is_badblock(...)) error path in raid5_read_one_chunk(). The error path was moved ahead of bio_alloc_clone() in c82aa1b76787c ("md/raid5: move checking badblock before clone bio in raid5_read_one_chunk"). The previous code checked and freed align_bio which required a bio_put. After the move that is no longer needed as raid_bio is returned to the control of the common io path which performs its own endio resulting in a double free on bad device blocks.
CVE-2023-54108 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix DMA-API call trace on NVMe LS requests The following message and call trace was seen with debug kernels: DMA-API: qla2xxx 0000:41:00.0: device driver failed to check map error [device address=0x00000002a3ff38d8] [size=1024 bytes] [mapped as single] WARNING: CPU: 0 PID: 2930 at kernel/dma/debug.c:1017 check_unmap+0xf42/0x1990 Call Trace: debug_dma_unmap_page+0xc9/0x100 qla_nvme_ls_unmap+0x141/0x210 [qla2xxx] Remove DMA mapping from the driver altogether, as it is already done by FC layer. This prevents the warning.
CVE-2022-50775 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: Fix refcount leak in hns_roce_mmap rdma_user_mmap_entry_get_pgoff() takes the reference. Add missing rdma_user_mmap_entry_put() to release the reference. Acked-by Haoyue Xu <xuhaoyue1@hisilicon.com>
CVE-2022-50776 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: clk: st: Fix memory leak in st_of_quadfs_setup() If st_clk_register_quadfs_pll() fails, @lock should be freed before goto @err_exit, otherwise will cause meory leak issue, fix it.
CVE-2022-50777 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: phy: xgmiitorgmii: Fix refcount leak in xgmiitorgmii_probe of_phy_find_device() return device node with refcount incremented. Call put_device() to relese it when not needed anymore.
CVE-2022-50766 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: set generation before calling btrfs_clean_tree_block in btrfs_init_new_buffer syzbot is reporting uninit-value in btrfs_clean_tree_block() [1], for commit bc877d285ca3dba2 ("btrfs: Deduplicate extent_buffer init code") missed that btrfs_set_header_generation() in btrfs_init_new_buffer() must not be moved to after clean_tree_block() because clean_tree_block() is calling btrfs_header_generation() since commit 55c69072d6bd5be1 ("Btrfs: Fix extent_buffer usage when nodesize != leafsize"). Since memzero_extent_buffer() will reset "struct btrfs_header" part, we can't move btrfs_set_header_generation() to before memzero_extent_buffer(). Just re-add btrfs_set_header_generation() before btrfs_clean_tree_block().
CVE-2022-50767 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: fbdev: smscufx: Fix several use-after-free bugs Several types of UAFs can occur when physically removing a USB device. Adds ufx_ops_destroy() function to .fb_destroy of fb_ops, and in this function, there is kref_put() that finally calls ufx_free(). This fix prevents multiple UAFs.
CVE-2022-50768 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: smartpqi: Correct device removal for multi-actuator devices Correct device count for multi-actuator drives which can cause kernel panics.
CVE-2022-50769 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mmc: mxcmmc: fix return value check of mmc_add_host() mmc_add_host() may return error, if we ignore its return value, the memory that allocated in mmc_alloc_host() will be leaked and it will lead a kernel crash because of deleting not added device in the remove path. So fix this by checking the return value and goto error path which will call mmc_free_host().
CVE-2023-54062 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: fix invalid free tracking in ext4_xattr_move_to_block() In ext4_xattr_move_to_block(), the value of the extended attribute which we need to move to an external block may be allocated by kvmalloc() if the value is stored in an external inode. So at the end of the function the code tried to check if this was the case by testing entry->e_value_inum. However, at this point, the pointer to the xattr entry is no longer valid, because it was removed from the original location where it had been stored. So we could end up calling kvfree() on a pointer which was not allocated by kvmalloc(); or we could also potentially leak memory by not freeing the buffer when it should be freed. Fix this by storing whether it should be freed in a separate variable.
CVE-2023-54063 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Fix OOB read in indx_insert_into_buffer Syzbot reported a OOB read bug: BUG: KASAN: slab-out-of-bounds in indx_insert_into_buffer+0xaa3/0x13b0 fs/ntfs3/index.c:1755 Read of size 17168 at addr ffff8880255e06c0 by task syz-executor308/3630 Call Trace: <TASK> memmove+0x25/0x60 mm/kasan/shadow.c:54 indx_insert_into_buffer+0xaa3/0x13b0 fs/ntfs3/index.c:1755 indx_insert_entry+0x446/0x6b0 fs/ntfs3/index.c:1863 ntfs_create_inode+0x1d3f/0x35c0 fs/ntfs3/inode.c:1548 ntfs_create+0x3e/0x60 fs/ntfs3/namei.c:100 lookup_open fs/namei.c:3413 [inline] If the member struct INDEX_BUFFER *index of struct indx_node is incorrect, that is, the value of __le32 used is greater than the value of __le32 total in struct INDEX_HDR. Therefore, OOB read occurs when memmove is called in indx_insert_into_buffer(). Fix this by adding a check in hdr_find_e().
CVE-2023-54064 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ipmi:ssif: Fix a memory leak when scanning for an adapter The adapter scan ssif_info_find() sets info->adapter_name if the adapter info came from SMBIOS, as it's not set in that case. However, this function can be called more than once, and it will leak the adapter name if it had already been set. So check for NULL before setting it.
CVE-2023-54065 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: net: dsa: realtek: fix out-of-bounds access The probe function sets priv->chip_data to (void *)priv + sizeof(*priv) with the expectation that priv has enough trailing space. However, only realtek-smi actually allocated this chip_data space. Do likewise in realtek-mdio to fix out-of-bounds accesses. These accesses likely went unnoticed so far, because of an (unused) buf[4096] member in struct realtek_priv, which caused kmalloc to round up the allocated buffer to a big enough size, so nothing of value was overwritten. With a different allocator (like in the barebox bootloader port of the driver) or with KASAN, the memory corruption becomes quickly apparent.
CVE-2023-54066 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: dvb-usb-v2: gl861: Fix null-ptr-deref in gl861_i2c_master_xfer In gl861_i2c_master_xfer, msg is controlled by user. When msg[i].buf is null and msg[i].len is zero, former checks on msg[i].buf would be passed. Malicious data finally reach gl861_i2c_master_xfer. If accessing msg[i].buf[0] without sanity check, null ptr deref would happen. We add check on msg[i].len to prevent crash. Similar commit: commit 0ed554fd769a ("media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer()")
CVE-2023-54087 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ubi: Fix possible null-ptr-deref in ubi_free_volume() It willl cause null-ptr-deref in the following case: uif_init() ubi_add_volume() cdev_add() -> if it fails, call kill_volumes() device_register() kill_volumes() -> if ubi_add_volume() fails call this function ubi_free_volume() cdev_del() device_unregister() -> trying to delete a not added device, it causes null-ptr-deref So in ubi_free_volume(), it delete devices whether they are added or not, it will causes null-ptr-deref. Handle the error case whlie calling ubi_add_volume() to fix this problem. If add volume fails, set the corresponding vol to null, so it can not be accessed in kill_volumes() and release the resource in ubi_add_volume() error path.
CVE-2023-54088 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: hold queue_lock when removing blkg->q_node When blkg is removed from q->blkg_list from blkg_free_workfn(), queue_lock has to be held, otherwise, all kinds of bugs(list corruption, hard lockup, ..) can be triggered from blkg_destroy_all().
CVE-2023-54093 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: anysee: fix null-ptr-deref in anysee_master_xfer In anysee_master_xfer, msg is controlled by user. When msg[i].buf is null and msg[i].len is zero, former checks on msg[i].buf would be passed. Malicious data finally reach anysee_master_xfer. If accessing msg[i].buf[0] without sanity check, null ptr deref would happen. We add check on msg[i].len to prevent crash. Similar commit: commit 0ed554fd769a ("media: dvb-usb: az6027: fix null-ptr-deref in az6027_i2c_xfer()") [hverkuil: add spaces around +]
CVE-2023-54098 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/i915/gvt: fix gvt debugfs destroy When gvt debug fs is destroyed, need to have a sane check if drm minor's debugfs root is still available or not, otherwise in case like device remove through unbinding, drm minor's debugfs directory has already been removed, then intel_gvt_debugfs_clean() would act upon dangling pointer like below oops. i915 0000:00:02.0: Direct firmware load for i915/gvt/vid_0x8086_did_0x1926_rid_0x0a.golden_hw_state failed with error -2 i915 0000:00:02.0: MDEV: Registered Console: switching to colour dummy device 80x25 i915 0000:00:02.0: MDEV: Unregistering BUG: kernel NULL pointer dereference, address: 00000000000000a0 PGD 0 P4D 0 Oops: 0002 [#1] PREEMPT SMP PTI CPU: 2 PID: 2486 Comm: gfx-unbind.sh Tainted: G I 6.1.0-rc8+ #15 Hardware name: Dell Inc. XPS 13 9350/0JXC1H, BIOS 1.13.0 02/10/2020 RIP: 0010:down_write+0x1f/0x90 Code: 1d ff ff 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 53 48 89 fb e8 62 c0 ff ff bf 01 00 00 00 e8 28 5e 31 ff 31 c0 ba 01 00 00 00 <f0> 48 0f b1 13 75 33 65 48 8b 04 25 c0 bd 01 00 48 89 43 08 bf 01 RSP: 0018:ffff9eb3036ffcc8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 00000000000000a0 RCX: ffffff8100000000 RDX: 0000000000000001 RSI: 0000000000000064 RDI: ffffffffa48787a8 RBP: ffff9eb3036ffd30 R08: ffffeb1fc45a0608 R09: ffffeb1fc45a05c0 R10: 0000000000000002 R11: 0000000000000000 R12: 0000000000000000 R13: ffff91acc33fa328 R14: ffff91acc033f080 R15: ffff91acced533e0 FS: 00007f6947bba740(0000) GS:ffff91ae36d00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000000a0 CR3: 00000001133a2002 CR4: 00000000003706e0 Call Trace: <TASK> simple_recursive_removal+0x9f/0x2a0 ? start_creating.part.0+0x120/0x120 ? _raw_spin_lock+0x13/0x40 debugfs_remove+0x40/0x60 intel_gvt_debugfs_clean+0x15/0x30 [kvmgt] intel_gvt_clean_device+0x49/0xe0 [kvmgt] intel_gvt_driver_remove+0x2f/0xb0 i915_driver_remove+0xa4/0xf0 i915_pci_remove+0x1a/0x30 pci_device_remove+0x33/0xa0 device_release_driver_internal+0x1b2/0x230 unbind_store+0xe0/0x110 kernfs_fop_write_iter+0x11b/0x1f0 vfs_write+0x203/0x3d0 ksys_write+0x63/0xe0 do_syscall_64+0x37/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f6947cb5190 Code: 40 00 48 8b 15 71 9c 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 80 3d 51 24 0e 00 00 74 17 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 58 c3 0f 1f 80 00 00 00 00 48 83 ec 28 48 89 RSP: 002b:00007ffcbac45a28 EFLAGS: 00000202 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007f6947cb5190 RDX: 000000000000000d RSI: 0000555e35c866a0 RDI: 0000000000000001 RBP: 0000555e35c866a0 R08: 0000000000000002 R09: 0000555e358cb97c R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000001 R13: 000000000000000d R14: 0000000000000000 R15: 0000555e358cb8e0 </TASK> Modules linked in: kvmgt CR2: 00000000000000a0 ---[ end trace 0000000000000000 ]---
CVE-2023-54102 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Prevent lpfc_debugfs_lockstat_write() buffer overflow A static code analysis tool flagged the possibility of buffer overflow when using copy_from_user() for a debugfs entry. Currently, it is possible that copy_from_user() copies more bytes than what would fit in the mybuf char array. Add a min() restriction check between sizeof(mybuf) - 1 and nbytes passed from the userspace buffer to protect against buffer overflow.