| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| NVIDIA NeMo Framework contains a vulnerability where an attacker could cause remote code execution. A successful exploit of this vulnerability might lead to code execution, denial of service, information disclosure, and data tampering. |
| NVIDIA NeMo Framework contains a vulnerability where an attacker could cause remote code execution. A successful exploit of this vulnerability might lead to code execution, denial of service, information disclosure, and data tampering. |
| NVIDIA NeMo Framework contains a vulnerability where an attacker could cause remote code execution. A successful exploit of this vulnerability might lead to code execution, denial of service, information disclosure, and data tampering. |
| NVIDIA NeMo Framework contains a vulnerability where an attacker could cause remote code execution by convincing a user to load a maliciously crafted file. A successful exploit of this vulnerability might lead to code execution, denial of service, information disclosure, and data tampering. |
| NVIDIA Megatron Bridge contains a vulnerability in a data merging tutorial, where malicious input could cause a code injection. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, information disclosure, and data tampering. |
| NVIDIA Megatron Bridge contains a vulnerability in a data shuffling tutorial, where malicious input could cause a code injection. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, information disclosure, and data tampering. |
| A vulnerability has been identified in the OPC.Testclient utility, which is included in Rexroth IndraWorks. All versions prior to 15V24 are affected. This flaw allows an attacker to execute arbitrary code on the user's system by parsing a manipulated file containing malicious serialized data. Exploitation requires user interaction, specifically opening a specially crafted file, which then causes the application to deserialize the malicious data, enabling Remote Code Execution (RCE). This can lead to a complete compromise of the system running the OPC.Testclient. |
| A vulnerability has been identified in the UA.Testclient utility, which is included in Rexroth IndraWorks. All versions prior to 15V24 are affected. This flaw allows an attacker to execute arbitrary code on the user's system by parsing a manipulated file containing malicious serialized data. Exploitation requires user interaction, specifically opening a specially crafted file, which then causes the application to deserialize the malicious data, enabling Remote Code Execution (RCE). This can lead to a complete compromise of the system running the UA.Testclient. |
| A vulnerability has been identified in Rexroth IndraWorks. This flaw allows an attacker to execute arbitrary code on the user's system by parsing a manipulated file containing malicious serialized data. Exploitation requires user interaction, specifically opening a specially crafted file, which then causes the application to deserialize the malicious data, enabling Remote Code Execution (RCE). This can lead to a complete compromise of the system running Rexroth IndraWorks. |
| A vulnerability has been identified in Rexroth IndraWorks. This flaw allows an attacker to execute arbitrary code on the user's system by parsing a manipulated file containing malicious serialized data. Exploitation requires user interaction, specifically opening a specially crafted file, which then causes the application to deserialize the malicious data, enabling Remote Code Execution (RCE). This can lead to a complete compromise of the system running Rexroth IndraWorks. |
| An unauthenticated stack-based buffer overflow vulnerability exists in the HTTP API endpoint /cgi-bin/api.values.get. A remote attacker can leverage this vulnerability to achieve unauthenticated remote code execution (RCE) with root privileges on a target device. The vulnerability affects all six device models in the series: GXP1610, GXP1615, GXP1620, GXP1625, GXP1628, and GXP1630. |
| In the Linux kernel, the following vulnerability has been resolved:
mm, swap: restore swap_space attr aviod kernel panic
commit 8b47299a411a ("mm, swap: mark swap address space ro and add context
debug check") made the swap address space read-only. It may lead to
kernel panic if arch_prepare_to_swap returns a failure under heavy memory
pressure as follows,
el1_abort+0x40/0x64
el1h_64_sync_handler+0x48/0xcc
el1h_64_sync+0x84/0x88
errseq_set+0x4c/0xb8 (P)
__filemap_set_wb_err+0x20/0xd0
shrink_folio_list+0xc20/0x11cc
evict_folios+0x1520/0x1be4
try_to_shrink_lruvec+0x27c/0x3dc
shrink_one+0x9c/0x228
shrink_node+0xb3c/0xeac
do_try_to_free_pages+0x170/0x4f0
try_to_free_pages+0x334/0x534
__alloc_pages_direct_reclaim+0x90/0x158
__alloc_pages_slowpath+0x334/0x588
__alloc_frozen_pages_noprof+0x224/0x2fc
__folio_alloc_noprof+0x14/0x64
vma_alloc_zeroed_movable_folio+0x34/0x44
do_pte_missing+0xad4/0x1040
handle_mm_fault+0x4a4/0x790
do_page_fault+0x288/0x5f8
do_translation_fault+0x38/0x54
do_mem_abort+0x54/0xa8
Restore swap address space as not ro to avoid the panic. |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: annotate data-races around slave->last_rx
slave->last_rx and slave->target_last_arp_rx[...] can be read and written
locklessly. Add READ_ONCE() and WRITE_ONCE() annotations.
syzbot reported:
BUG: KCSAN: data-race in bond_rcv_validate / bond_rcv_validate
write to 0xffff888149f0d428 of 8 bytes by interrupt on cpu 1:
bond_rcv_validate+0x202/0x7a0 drivers/net/bonding/bond_main.c:3335
bond_handle_frame+0xde/0x5e0 drivers/net/bonding/bond_main.c:1533
__netif_receive_skb_core+0x5b1/0x1950 net/core/dev.c:6039
__netif_receive_skb_one_core net/core/dev.c:6150 [inline]
__netif_receive_skb+0x59/0x270 net/core/dev.c:6265
netif_receive_skb_internal net/core/dev.c:6351 [inline]
netif_receive_skb+0x4b/0x2d0 net/core/dev.c:6410
...
write to 0xffff888149f0d428 of 8 bytes by interrupt on cpu 0:
bond_rcv_validate+0x202/0x7a0 drivers/net/bonding/bond_main.c:3335
bond_handle_frame+0xde/0x5e0 drivers/net/bonding/bond_main.c:1533
__netif_receive_skb_core+0x5b1/0x1950 net/core/dev.c:6039
__netif_receive_skb_one_core net/core/dev.c:6150 [inline]
__netif_receive_skb+0x59/0x270 net/core/dev.c:6265
netif_receive_skb_internal net/core/dev.c:6351 [inline]
netif_receive_skb+0x4b/0x2d0 net/core/dev.c:6410
br_netif_receive_skb net/bridge/br_input.c:30 [inline]
NF_HOOK include/linux/netfilter.h:318 [inline]
...
value changed: 0x0000000100005365 -> 0x0000000100005366 |
| Jenkins 2.483 through 2.550 (both inclusive), LTS 2.492.1 through 2.541.1 (both inclusive) does not escape the user-provided description of the "Mark temporarily offline" offline cause, resulting in a stored cross-site scripting (XSS) vulnerability exploitable by attackers with Agent/Configure or Agent/Disconnect permission. |
| Jenkins 2.550 and earlier, LTS 2.541.1 and earlier accepts Run Parameter values that refer to builds the user submitting the build does not have access to, allowing attackers with Item/Build and Item/Configure permission to obtain information about the existence of jobs, the existence of builds, and if a specified build exists, its display name. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: Implement settime64 as stub for MVM/MLD PTP
Since commit dfb073d32cac ("ptp: Return -EINVAL on ptp_clock_register if
required ops are NULL"), PTP clock registered through ptp_clock_register
is required to have ptp_clock_info.settime64 set, however, neither MVM
nor MLD's PTP clock implementation sets it, resulting in warnings when
the interface starts up, like
WARNING: drivers/ptp/ptp_clock.c:325 at ptp_clock_register+0x2c8/0x6b8, CPU#1: wpa_supplicant/469
CPU: 1 UID: 0 PID: 469 Comm: wpa_supplicant Not tainted 6.18.0+ #101 PREEMPT(full)
ra: ffff800002732cd4 iwl_mvm_ptp_init+0x114/0x188 [iwlmvm]
ERA: 9000000002fdc468 ptp_clock_register+0x2c8/0x6b8
iwlwifi 0000:01:00.0: Failed to register PHC clock (-22)
I don't find an appropriate firmware interface to implement settime64()
for iwlwifi MLD/MVM, thus instead create a stub that returns
-EOPTNOTSUPP only, suppressing the warning and allowing the PTP clock to
be registered. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Set correct protection_map[] for VM_NONE/VM_SHARED
For 32BIT platform _PAGE_PROTNONE is 0, so set a VMA to be VM_NONE or
VM_SHARED will make pages non-present, then cause Oops with kernel page
fault.
Fix it by set correct protection_map[] for VM_NONE/VM_SHARED, replacing
_PAGE_PROTNONE with _PAGE_PRESENT. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: loongson-64bit: Fix incorrect NULL check after devm_kcalloc()
Fix incorrect NULL check in loongson_gpio_init_irqchip().
The function checks chip->parent instead of chip->irq.parents. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slab: Add alloc_tagging_slab_free_hook for memcg_alloc_abort_single
When CONFIG_MEM_ALLOC_PROFILING_DEBUG is enabled, the following warning
may be noticed:
[ 3959.023862] ------------[ cut here ]------------
[ 3959.023891] alloc_tag was not cleared (got tag for lib/xarray.c:378)
[ 3959.023947] WARNING: ./include/linux/alloc_tag.h:155 at alloc_tag_add+0x128/0x178, CPU#6: mkfs.ntfs/113998
[ 3959.023978] Modules linked in: dns_resolver tun brd overlay exfat btrfs blake2b libblake2b xor xor_neon raid6_pq loop sctp ip6_udp_tunnel udp_tunnel ext4 crc16 mbcache jbd2 rfkill sunrpc vfat fat sg fuse nfnetlink sr_mod virtio_gpu cdrom drm_client_lib virtio_dma_buf drm_shmem_helper drm_kms_helper ghash_ce drm sm4 backlight virtio_net net_failover virtio_scsi failover virtio_console virtio_blk virtio_mmio dm_mirror dm_region_hash dm_log dm_multipath dm_mod i2c_dev aes_neon_bs aes_ce_blk [last unloaded: hwpoison_inject]
[ 3959.024170] CPU: 6 UID: 0 PID: 113998 Comm: mkfs.ntfs Kdump: loaded Tainted: G W 6.19.0-rc7+ #7 PREEMPT(voluntary)
[ 3959.024182] Tainted: [W]=WARN
[ 3959.024186] Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
[ 3959.024192] pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 3959.024199] pc : alloc_tag_add+0x128/0x178
[ 3959.024207] lr : alloc_tag_add+0x128/0x178
[ 3959.024214] sp : ffff80008b696d60
[ 3959.024219] x29: ffff80008b696d60 x28: 0000000000000000 x27: 0000000000000240
[ 3959.024232] x26: 0000000000000000 x25: 0000000000000240 x24: ffff800085d17860
[ 3959.024245] x23: 0000000000402800 x22: ffff0000c0012dc0 x21: 00000000000002d0
[ 3959.024257] x20: ffff0000e6ef3318 x19: ffff800085ae0410 x18: 0000000000000000
[ 3959.024269] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
[ 3959.024281] x14: 0000000000000000 x13: 0000000000000001 x12: ffff600064101293
[ 3959.024292] x11: 1fffe00064101292 x10: ffff600064101292 x9 : dfff800000000000
[ 3959.024305] x8 : 00009fff9befed6e x7 : ffff000320809493 x6 : 0000000000000001
[ 3959.024316] x5 : ffff000320809490 x4 : ffff600064101293 x3 : ffff800080691838
[ 3959.024328] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000d5bcd640
[ 3959.024340] Call trace:
[ 3959.024346] alloc_tag_add+0x128/0x178 (P)
[ 3959.024355] __alloc_tagging_slab_alloc_hook+0x11c/0x1a8
[ 3959.024362] kmem_cache_alloc_lru_noprof+0x1b8/0x5e8
[ 3959.024369] xas_alloc+0x304/0x4f0
[ 3959.024381] xas_create+0x1e0/0x4a0
[ 3959.024388] xas_store+0x68/0xda8
[ 3959.024395] __filemap_add_folio+0x5b0/0xbd8
[ 3959.024409] filemap_add_folio+0x16c/0x7e0
[ 3959.024416] __filemap_get_folio_mpol+0x2dc/0x9e8
[ 3959.024424] iomap_get_folio+0xfc/0x180
[ 3959.024435] __iomap_get_folio+0x2f8/0x4b8
[ 3959.024441] iomap_write_begin+0x198/0xc18
[ 3959.024448] iomap_write_iter+0x2ec/0x8f8
[ 3959.024454] iomap_file_buffered_write+0x19c/0x290
[ 3959.024461] blkdev_write_iter+0x38c/0x978
[ 3959.024470] vfs_write+0x4d4/0x928
[ 3959.024482] ksys_write+0xfc/0x1f8
[ 3959.024489] __arm64_sys_write+0x74/0xb0
[ 3959.024496] invoke_syscall+0xd4/0x258
[ 3959.024507] el0_svc_common.constprop.0+0xb4/0x240
[ 3959.024514] do_el0_svc+0x48/0x68
[ 3959.024520] el0_svc+0x40/0xf8
[ 3959.024526] el0t_64_sync_handler+0xa0/0xe8
[ 3959.024533] el0t_64_sync+0x1ac/0x1b0
[ 3959.024540] ---[ end trace 0000000000000000 ]---
When __memcg_slab_post_alloc_hook() fails, there are two different
free paths depending on whether size == 1 or size != 1. In the
kmem_cache_free_bulk() path, we do call alloc_tagging_slab_free_hook().
However, in memcg_alloc_abort_single() we don't, the above warning will be
triggered on the next allocation.
Therefore, add alloc_tagging_slab_free_hook() to the
memcg_alloc_abort_single() path. |
| The Advanced AJAX Product Filters plugin for WordPress is vulnerable to PHP Object Injection in all versions up to, and including, 3.1.9.6 via deserialization of untrusted input in the shortcode_check function within the Live Composer compatibility layer. This makes it possible for authenticated attackers, with Author-level access and above, to inject a PHP Object. No known POP chain is present in the vulnerable software, which means this vulnerability has no impact unless another plugin or theme containing a POP chain is installed on the site. If a POP chain is present via an additional plugin or theme installed on the target system, it may allow the attacker to perform actions like delete arbitrary files, retrieve sensitive data, or execute code depending on the POP chain present. Note: This vulnerability requires the Live Composer plugin to also be installed and active. |