| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Limit num_syncs to prevent oversized allocations
The exec and vm_bind ioctl allow userspace to specify an arbitrary
num_syncs value. Without bounds checking, a very large num_syncs
can force an excessively large allocation, leading to kernel warnings
from the page allocator as below.
Introduce DRM_XE_MAX_SYNCS (set to 1024) and reject any request
exceeding this limit.
"
------------[ cut here ]------------
WARNING: CPU: 0 PID: 1217 at mm/page_alloc.c:5124 __alloc_frozen_pages_noprof+0x2f8/0x2180 mm/page_alloc.c:5124
...
Call Trace:
<TASK>
alloc_pages_mpol+0xe4/0x330 mm/mempolicy.c:2416
___kmalloc_large_node+0xd8/0x110 mm/slub.c:4317
__kmalloc_large_node_noprof+0x18/0xe0 mm/slub.c:4348
__do_kmalloc_node mm/slub.c:4364 [inline]
__kmalloc_noprof+0x3d4/0x4b0 mm/slub.c:4388
kmalloc_noprof include/linux/slab.h:909 [inline]
kmalloc_array_noprof include/linux/slab.h:948 [inline]
xe_exec_ioctl+0xa47/0x1e70 drivers/gpu/drm/xe/xe_exec.c:158
drm_ioctl_kernel+0x1f1/0x3e0 drivers/gpu/drm/drm_ioctl.c:797
drm_ioctl+0x5e7/0xc50 drivers/gpu/drm/drm_ioctl.c:894
xe_drm_ioctl+0x10b/0x170 drivers/gpu/drm/xe/xe_device.c:224
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:598 [inline]
__se_sys_ioctl fs/ioctl.c:584 [inline]
__x64_sys_ioctl+0x18b/0x210 fs/ioctl.c:584
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xbb/0x380 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
...
"
v2: Add "Reported-by" and Cc stable kernels.
v3: Change XE_MAX_SYNCS from 64 to 1024. (Matt & Ashutosh)
v4: s/XE_MAX_SYNCS/DRM_XE_MAX_SYNCS/ (Matt)
v5: Do the check at the top of the exec func. (Matt)
(cherry picked from commit b07bac9bd708ec468cd1b8a5fe70ae2ac9b0a11c) |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: Disallow toggling KVM_MEM_GUEST_MEMFD on an existing memslot
Reject attempts to disable KVM_MEM_GUEST_MEMFD on a memslot that was
initially created with a guest_memfd binding, as KVM doesn't support
toggling KVM_MEM_GUEST_MEMFD on existing memslots. KVM prevents enabling
KVM_MEM_GUEST_MEMFD, but doesn't prevent clearing the flag.
Failure to reject the new memslot results in a use-after-free due to KVM
not unbinding from the guest_memfd instance. Unbinding on a FLAGS_ONLY
change is easy enough, and can/will be done as a hardening measure (in
anticipation of KVM supporting dirty logging on guest_memfd at some point),
but fixing the use-after-free would only address the immediate symptom.
==================================================================
BUG: KASAN: slab-use-after-free in kvm_gmem_release+0x362/0x400 [kvm]
Write of size 8 at addr ffff8881111ae908 by task repro/745
CPU: 7 UID: 1000 PID: 745 Comm: repro Not tainted 6.18.0-rc6-115d5de2eef3-next-kasan #3 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
<TASK>
dump_stack_lvl+0x51/0x60
print_report+0xcb/0x5c0
kasan_report+0xb4/0xe0
kvm_gmem_release+0x362/0x400 [kvm]
__fput+0x2fa/0x9d0
task_work_run+0x12c/0x200
do_exit+0x6ae/0x2100
do_group_exit+0xa8/0x230
__x64_sys_exit_group+0x3a/0x50
x64_sys_call+0x737/0x740
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f581f2eac31
</TASK>
Allocated by task 745 on cpu 6 at 9.746971s:
kasan_save_stack+0x20/0x40
kasan_save_track+0x13/0x50
__kasan_kmalloc+0x77/0x90
kvm_set_memory_region.part.0+0x652/0x1110 [kvm]
kvm_vm_ioctl+0x14b0/0x3290 [kvm]
__x64_sys_ioctl+0x129/0x1a0
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Freed by task 745 on cpu 6 at 9.747467s:
kasan_save_stack+0x20/0x40
kasan_save_track+0x13/0x50
__kasan_save_free_info+0x37/0x50
__kasan_slab_free+0x3b/0x60
kfree+0xf5/0x440
kvm_set_memslot+0x3c2/0x1160 [kvm]
kvm_set_memory_region.part.0+0x86a/0x1110 [kvm]
kvm_vm_ioctl+0x14b0/0x3290 [kvm]
__x64_sys_ioctl+0x129/0x1a0
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53 |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: fw_tracer, Validate format string parameters
Add validation for format string parameters in the firmware tracer to
prevent potential security vulnerabilities and crashes from malformed
format strings received from firmware.
The firmware tracer receives format strings from the device firmware and
uses them to format trace messages. Without proper validation, bad
firmware could provide format strings with invalid format specifiers
(e.g., %s, %p, %n) that could lead to crashes, or other undefined
behavior.
Add mlx5_tracer_validate_params() to validate that all format specifiers
in trace strings are limited to safe integer/hex formats (%x, %d, %i,
%u, %llx, %lx, etc.). Reject strings containing other format types that
could be used to access arbitrary memory or cause crashes.
Invalid format strings are added to the trace output for visibility with
"BAD_FORMAT: " prefix. |
| In the Linux kernel, the following vulnerability has been resolved:
fuse: fix readahead reclaim deadlock
Commit e26ee4efbc79 ("fuse: allocate ff->release_args only if release is
needed") skips allocating ff->release_args if the server does not
implement open. However in doing so, fuse_prepare_release() now skips
grabbing the reference on the inode, which makes it possible for an
inode to be evicted from the dcache while there are inflight readahead
requests. This causes a deadlock if the server triggers reclaim while
servicing the readahead request and reclaim attempts to evict the inode
of the file being read ahead. Since the folio is locked during
readahead, when reclaim evicts the fuse inode and fuse_evict_inode()
attempts to remove all folios associated with the inode from the page
cache (truncate_inode_pages_range()), reclaim will block forever waiting
for the lock since readahead cannot relinquish the lock because it is
itself blocked in reclaim:
>>> stack_trace(1504735)
folio_wait_bit_common (mm/filemap.c:1308:4)
folio_lock (./include/linux/pagemap.h:1052:3)
truncate_inode_pages_range (mm/truncate.c:336:10)
fuse_evict_inode (fs/fuse/inode.c:161:2)
evict (fs/inode.c:704:3)
dentry_unlink_inode (fs/dcache.c:412:3)
__dentry_kill (fs/dcache.c:615:3)
shrink_kill (fs/dcache.c:1060:12)
shrink_dentry_list (fs/dcache.c:1087:3)
prune_dcache_sb (fs/dcache.c:1168:2)
super_cache_scan (fs/super.c:221:10)
do_shrink_slab (mm/shrinker.c:435:9)
shrink_slab (mm/shrinker.c:626:10)
shrink_node (mm/vmscan.c:5951:2)
shrink_zones (mm/vmscan.c:6195:3)
do_try_to_free_pages (mm/vmscan.c:6257:3)
do_swap_page (mm/memory.c:4136:11)
handle_pte_fault (mm/memory.c:5562:10)
handle_mm_fault (mm/memory.c:5870:9)
do_user_addr_fault (arch/x86/mm/fault.c:1338:10)
handle_page_fault (arch/x86/mm/fault.c:1481:3)
exc_page_fault (arch/x86/mm/fault.c:1539:2)
asm_exc_page_fault+0x22/0x27
Fix this deadlock by allocating ff->release_args and grabbing the
reference on the inode when preparing the file for release even if the
server does not implement open. The inode reference will be dropped when
the last reference on the fuse file is dropped (see fuse_file_put() ->
fuse_release_end()). |
| Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow in the cloneType2 parameter of the fromAdvSetMacMtuWan function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow in the wanSpeed2 parameter of the fromAdvSetMacMtuWan function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow in the wanMTU2 parameter of the fromAdvSetMacMtuWan function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| In the Linux kernel, the following vulnerability has been resolved:
svcrdma: bound check rq_pages index in inline path
svc_rdma_copy_inline_range indexed rqstp->rq_pages[rc_curpage] without
verifying rc_curpage stays within the allocated page array. Add guards
before the first use and after advancing to a new page. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: lkkbd - disable pending work before freeing device
lkkbd_interrupt() schedules lk->tq via schedule_work(), and the work
handler lkkbd_reinit() dereferences the lkkbd structure and its
serio/input_dev fields.
lkkbd_disconnect() and error paths in lkkbd_connect() free the lkkbd
structure without preventing the reinit work from being queued again
until serio_close() returns. This can allow the work handler to run
after the structure has been freed, leading to a potential use-after-free.
Use disable_work_sync() instead of cancel_work_sync() to ensure the
reinit work cannot be re-queued, and call it both in lkkbd_disconnect()
and in lkkbd_connect() error paths after serio_open(). |
| In the Linux kernel, the following vulnerability has been resolved:
functionfs: fix the open/removal races
ffs_epfile_open() can race with removal, ending up with file->private_data
pointing to freed object.
There is a total count of opened files on functionfs (both ep0 and
dynamic ones) and when it hits zero, dynamic files get removed.
Unfortunately, that removal can happen while another thread is
in ffs_epfile_open(), but has not incremented the count yet.
In that case open will succeed, leaving us with UAF on any subsequent
read() or write().
The root cause is that ffs->opened is misused; atomic_dec_and_test() vs.
atomic_add_return() is not a good idea, when object remains visible all
along.
To untangle that
* serialize openers on ffs->mutex (both for ep0 and for dynamic files)
* have dynamic ones use atomic_inc_not_zero() and fail if we had
zero ->opened; in that case the file we are opening is doomed.
* have the inodes of dynamic files marked on removal (from the
callback of simple_recursive_removal()) - clear ->i_private there.
* have open of dynamic ones verify they hadn't been already removed,
along with checking that state is FFS_ACTIVE. |
| In the Linux kernel, the following vulnerability has been resolved:
net: nfc: fix deadlock between nfc_unregister_device and rfkill_fop_write
A deadlock can occur between nfc_unregister_device() and rfkill_fop_write()
due to lock ordering inversion between device_lock and rfkill_global_mutex.
The problematic lock order is:
Thread A (rfkill_fop_write):
rfkill_fop_write()
mutex_lock(&rfkill_global_mutex)
rfkill_set_block()
nfc_rfkill_set_block()
nfc_dev_down()
device_lock(&dev->dev) <- waits for device_lock
Thread B (nfc_unregister_device):
nfc_unregister_device()
device_lock(&dev->dev)
rfkill_unregister()
mutex_lock(&rfkill_global_mutex) <- waits for rfkill_global_mutex
This creates a classic ABBA deadlock scenario.
Fix this by moving rfkill_unregister() and rfkill_destroy() outside the
device_lock critical section. Store the rfkill pointer in a local variable
before releasing the lock, then call rfkill_unregister() after releasing
device_lock.
This change is safe because rfkill_fop_write() holds rfkill_global_mutex
while calling the rfkill callbacks, and rfkill_unregister() also acquires
rfkill_global_mutex before cleanup. Therefore, rfkill_unregister() will
wait for any ongoing callback to complete before proceeding, and
device_del() is only called after rfkill_unregister() returns, preventing
any use-after-free.
The similar lock ordering in nfc_register_device() (device_lock ->
rfkill_global_mutex via rfkill_register) is safe because during
registration the device is not yet in rfkill_list, so no concurrent
rfkill operations can occur on this device. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btusb: revert use of devm_kzalloc in btusb
This reverts commit 98921dbd00c4e ("Bluetooth: Use devm_kzalloc in
btusb.c file").
In btusb_probe(), we use devm_kzalloc() to allocate the btusb data. This
ties the lifetime of all the btusb data to the binding of a driver to
one interface, INTF. In a driver that binds to other interfaces, ISOC
and DIAG, this is an accident waiting to happen.
The issue is revealed in btusb_disconnect(), where calling
usb_driver_release_interface(&btusb_driver, data->intf) will have devm
free the data that is also being used by the other interfaces of the
driver that may not be released yet.
To fix this, revert the use of devm and go back to freeing memory
explicitly. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: BUG() in pskb_expand_head() as part of calipso_skbuff_setattr()
There exists a kernel oops caused by a BUG_ON(nhead < 0) at
net/core/skbuff.c:2232 in pskb_expand_head().
This bug is triggered as part of the calipso_skbuff_setattr()
routine when skb_cow() is passed headroom > INT_MAX
(i.e. (int)(skb_headroom(skb) + len_delta) < 0).
The root cause of the bug is due to an implicit integer cast in
__skb_cow(). The check (headroom > skb_headroom(skb)) is meant to ensure
that delta = headroom - skb_headroom(skb) is never negative, otherwise
we will trigger a BUG_ON in pskb_expand_head(). However, if
headroom > INT_MAX and delta <= -NET_SKB_PAD, the check passes, delta
becomes negative, and pskb_expand_head() is passed a negative value for
nhead.
Fix the trigger condition in calipso_skbuff_setattr(). Avoid passing
"negative" headroom sizes to skb_cow() within calipso_skbuff_setattr()
by only using skb_cow() to grow headroom.
PoC:
Using `netlabelctl` tool:
netlabelctl map del default
netlabelctl calipso add pass doi:7
netlabelctl map add default address:0::1/128 protocol:calipso,7
Then run the following PoC:
int fd = socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDP);
// setup msghdr
int cmsg_size = 2;
int cmsg_len = 0x60;
struct msghdr msg;
struct sockaddr_in6 dest_addr;
struct cmsghdr * cmsg = (struct cmsghdr *) calloc(1,
sizeof(struct cmsghdr) + cmsg_len);
msg.msg_name = &dest_addr;
msg.msg_namelen = sizeof(dest_addr);
msg.msg_iov = NULL;
msg.msg_iovlen = 0;
msg.msg_control = cmsg;
msg.msg_controllen = cmsg_len;
msg.msg_flags = 0;
// setup sockaddr
dest_addr.sin6_family = AF_INET6;
dest_addr.sin6_port = htons(31337);
dest_addr.sin6_flowinfo = htonl(31337);
dest_addr.sin6_addr = in6addr_loopback;
dest_addr.sin6_scope_id = 31337;
// setup cmsghdr
cmsg->cmsg_len = cmsg_len;
cmsg->cmsg_level = IPPROTO_IPV6;
cmsg->cmsg_type = IPV6_HOPOPTS;
char * hop_hdr = (char *)cmsg + sizeof(struct cmsghdr);
hop_hdr[1] = 0x9; //set hop size - (0x9 + 1) * 8 = 80
sendmsg(fd, &msg, 0); |
| In the Linux kernel, the following vulnerability has been resolved:
net: rose: fix invalid array index in rose_kill_by_device()
rose_kill_by_device() collects sockets into a local array[] and then
iterates over them to disconnect sockets bound to a device being brought
down.
The loop mistakenly indexes array[cnt] instead of array[i]. For cnt <
ARRAY_SIZE(array), this reads an uninitialized entry; for cnt ==
ARRAY_SIZE(array), it is an out-of-bounds read. Either case can lead to
an invalid socket pointer dereference and also leaks references taken
via sock_hold().
Fix the index to use i. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu: disable SVA when CONFIG_X86 is set
Patch series "Fix stale IOTLB entries for kernel address space", v7.
This proposes a fix for a security vulnerability related to IOMMU Shared
Virtual Addressing (SVA). In an SVA context, an IOMMU can cache kernel
page table entries. When a kernel page table page is freed and
reallocated for another purpose, the IOMMU might still hold stale,
incorrect entries. This can be exploited to cause a use-after-free or
write-after-free condition, potentially leading to privilege escalation or
data corruption.
This solution introduces a deferred freeing mechanism for kernel page
table pages, which provides a safe window to notify the IOMMU to
invalidate its caches before the page is reused.
This patch (of 8):
In the IOMMU Shared Virtual Addressing (SVA) context, the IOMMU hardware
shares and walks the CPU's page tables. The x86 architecture maps the
kernel's virtual address space into the upper portion of every process's
page table. Consequently, in an SVA context, the IOMMU hardware can walk
and cache kernel page table entries.
The Linux kernel currently lacks a notification mechanism for kernel page
table changes, specifically when page table pages are freed and reused.
The IOMMU driver is only notified of changes to user virtual address
mappings. This can cause the IOMMU's internal caches to retain stale
entries for kernel VA.
Use-After-Free (UAF) and Write-After-Free (WAF) conditions arise when
kernel page table pages are freed and later reallocated. The IOMMU could
misinterpret the new data as valid page table entries. The IOMMU might
then walk into attacker-controlled memory, leading to arbitrary physical
memory DMA access or privilege escalation. This is also a
Write-After-Free issue, as the IOMMU will potentially continue to write
Accessed and Dirty bits to the freed memory while attempting to walk the
stale page tables.
Currently, SVA contexts are unprivileged and cannot access kernel
mappings. However, the IOMMU will still walk kernel-only page tables all
the way down to the leaf entries, where it realizes the mapping is for the
kernel and errors out. This means the IOMMU still caches these
intermediate page table entries, making the described vulnerability a real
concern.
Disable SVA on x86 architecture until the IOMMU can receive notification
to flush the paging cache before freeing the CPU kernel page table pages. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix nfsd_file reference leak in nfsd4_add_rdaccess_to_wrdeleg()
nfsd4_add_rdaccess_to_wrdeleg() unconditionally overwrites
fp->fi_fds[O_RDONLY] with a newly acquired nfsd_file. However, if
the client already has a SHARE_ACCESS_READ open from a previous OPEN
operation, this action overwrites the existing pointer without
releasing its reference, orphaning the previous reference.
Additionally, the function originally stored the same nfsd_file
pointer in both fp->fi_fds[O_RDONLY] and fp->fi_rdeleg_file with
only a single reference. When put_deleg_file() runs, it clears
fi_rdeleg_file and calls nfs4_file_put_access() to release the file.
However, nfs4_file_put_access() only releases fi_fds[O_RDONLY] when
the fi_access[O_RDONLY] counter drops to zero. If another READ open
exists on the file, the counter remains elevated and the nfsd_file
reference from the delegation is never released. This potentially
causes open conflicts on that file.
Then, on server shutdown, these leaks cause __nfsd_file_cache_purge()
to encounter files with an elevated reference count that cannot be
cleaned up, ultimately triggering a BUG() in kmem_cache_destroy()
because there are still nfsd_file objects allocated in that cache. |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: asix: validate PHY address before use
The ASIX driver reads the PHY address from the USB device via
asix_read_phy_addr(). A malicious or faulty device can return an
invalid address (>= PHY_MAX_ADDR), which causes a warning in
mdiobus_get_phy():
addr 207 out of range
WARNING: drivers/net/phy/mdio_bus.c:76
Validate the PHY address in asix_read_phy_addr() and remove the
now-redundant check in ax88172a.c. |
| In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: fix the crash issue for zero copy XDP_TX action
There is a crash issue when running zero copy XDP_TX action, the crash
log is shown below.
[ 216.122464] Unable to handle kernel paging request at virtual address fffeffff80000000
[ 216.187524] Internal error: Oops: 0000000096000144 [#1] SMP
[ 216.301694] Call trace:
[ 216.304130] dcache_clean_poc+0x20/0x38 (P)
[ 216.308308] __dma_sync_single_for_device+0x1bc/0x1e0
[ 216.313351] stmmac_xdp_xmit_xdpf+0x354/0x400
[ 216.317701] __stmmac_xdp_run_prog+0x164/0x368
[ 216.322139] stmmac_napi_poll_rxtx+0xba8/0xf00
[ 216.326576] __napi_poll+0x40/0x218
[ 216.408054] Kernel panic - not syncing: Oops: Fatal exception in interrupt
For XDP_TX action, the xdp_buff is converted to xdp_frame by
xdp_convert_buff_to_frame(). The memory type of the resulting xdp_frame
depends on the memory type of the xdp_buff. For page pool based xdp_buff
it produces xdp_frame with memory type MEM_TYPE_PAGE_POOL. For zero copy
XSK pool based xdp_buff it produces xdp_frame with memory type
MEM_TYPE_PAGE_ORDER0. However, stmmac_xdp_xmit_back() does not check the
memory type and always uses the page pool type, this leads to invalid
mappings and causes the crash. Therefore, check the xdp_buff memory type
in stmmac_xdp_xmit_back() to fix this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv4: Fix reference count leak when using error routes with nexthop objects
When a nexthop object is deleted, it is marked as dead and then
fib_table_flush() is called to flush all the routes that are using the
dead nexthop.
The current logic in fib_table_flush() is to only flush error routes
(e.g., blackhole) when it is called as part of network namespace
dismantle (i.e., with flush_all=true). Therefore, error routes are not
flushed when their nexthop object is deleted:
# ip link add name dummy1 up type dummy
# ip nexthop add id 1 dev dummy1
# ip route add 198.51.100.1/32 nhid 1
# ip route add blackhole 198.51.100.2/32 nhid 1
# ip nexthop del id 1
# ip route show
blackhole 198.51.100.2 nhid 1 dev dummy1
As such, they keep holding a reference on the nexthop object which in
turn holds a reference on the nexthop device, resulting in a reference
count leak:
# ip link del dev dummy1
[ 70.516258] unregister_netdevice: waiting for dummy1 to become free. Usage count = 2
Fix by flushing error routes when their nexthop is marked as dead.
IPv6 does not suffer from this problem. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/oa: Fix potential UAF in xe_oa_add_config_ioctl()
In xe_oa_add_config_ioctl(), we accessed oa_config->id after dropping
metrics_lock. Since this lock protects the lifetime of oa_config, an
attacker could guess the id and call xe_oa_remove_config_ioctl() with
perfect timing, freeing oa_config before we dereference it, leading to
a potential use-after-free.
Fix this by caching the id in a local variable while holding the lock.
v2: (Matt A)
- Dropped mutex_unlock(&oa->metrics_lock) ordering change from
xe_oa_remove_config_ioctl()
(cherry picked from commit 28aeaed130e8e587fd1b73b6d66ca41ccc5a1a31) |