Search

Search Results (333022 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-23152 1 Linux 1 Linux Kernel 2026-02-16 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: correctly decode TTLM with default link map TID-To-Link Mapping (TTLM) elements do not contain any link mapping presence indicator if a default mapping is used and parsing needs to be skipped. Note that access points should not explicitly report an advertised TTLM with a default mapping as that is the implied mapping if the element is not included, this is even the case when switching back to the default mapping. However, mac80211 would incorrectly parse the frame and would also read one byte beyond the end of the element.
CVE-2026-23153 1 Linux 1 Linux Kernel 2026-02-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: firewire: core: fix race condition against transaction list The list of transaction is enumerated without acquiring card lock when processing AR response event. This causes a race condition bug when processing AT request completion event concurrently. This commit fixes the bug by put timer start for split transaction expiration into the scope of lock. The value of jiffies in card structure is referred before acquiring the lock.
CVE-2026-23154 1 Linux 1 Linux Kernel 2026-02-16 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: fix segmentation of forwarding fraglist GRO This patch enhances GSO segment handling by properly checking the SKB_GSO_DODGY flag for frag_list GSO packets, addressing low throughput issues observed when a station accesses IPv4 servers via hotspots with an IPv6-only upstream interface. Specifically, it fixes a bug in GSO segmentation when forwarding GRO packets containing a frag_list. The function skb_segment_list cannot correctly process GRO skbs that have been converted by XLAT, since XLAT only translates the header of the head skb. Consequently, skbs in the frag_list may remain untranslated, resulting in protocol inconsistencies and reduced throughput. To address this, the patch explicitly sets the SKB_GSO_DODGY flag for GSO packets in XLAT's IPv4/IPv6 protocol translation helpers (bpf_skb_proto_4_to_6 and bpf_skb_proto_6_to_4). This marks GSO packets as potentially modified after protocol translation. As a result, GSO segmentation will avoid using skb_segment_list and instead falls back to skb_segment for packets with the SKB_GSO_DODGY flag. This ensures that only safe and fully translated frag_list packets are processed by skb_segment_list, resolving protocol inconsistencies and improving throughput when forwarding GRO packets converted by XLAT.
CVE-2026-23155 1 Linux 1 Linux Kernel 2026-02-16 N/A
In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: gs_usb_receive_bulk_callback(): fix error message Sinc commit 79a6d1bfe114 ("can: gs_usb: gs_usb_receive_bulk_callback(): unanchor URL on usb_submit_urb() error") a failing resubmit URB will print an info message. In the case of a short read where netdev has not yet been assigned, initialize as NULL to avoid dereferencing an undefined value. Also report the error value of the failed resubmit.
CVE-2026-23156 1 Linux 1 Linux Kernel 2026-02-16 7.0 High
In the Linux kernel, the following vulnerability has been resolved: efivarfs: fix error propagation in efivar_entry_get() efivar_entry_get() always returns success even if the underlying __efivar_entry_get() fails, masking errors. This may result in uninitialized heap memory being copied to userspace in the efivarfs_file_read() path. Fix it by returning the error from __efivar_entry_get().
CVE-2026-23157 1 Linux 1 Linux Kernel 2026-02-16 N/A
In the Linux kernel, the following vulnerability has been resolved: btrfs: do not strictly require dirty metadata threshold for metadata writepages [BUG] There is an internal report that over 1000 processes are waiting at the io_schedule_timeout() of balance_dirty_pages(), causing a system hang and trigger a kernel coredump. The kernel is v6.4 kernel based, but the root problem still applies to any upstream kernel before v6.18. [CAUSE] From Jan Kara for his wisdom on the dirty page balance behavior first. This cgroup dirty limit was what was actually playing the role here because the cgroup had only a small amount of memory and so the dirty limit for it was something like 16MB. Dirty throttling is responsible for enforcing that nobody can dirty (significantly) more dirty memory than there's dirty limit. Thus when a task is dirtying pages it periodically enters into balance_dirty_pages() and we let it sleep there to slow down the dirtying. When the system is over dirty limit already (either globally or within a cgroup of the running task), we will not let the task exit from balance_dirty_pages() until the number of dirty pages drops below the limit. So in this particular case, as I already mentioned, there was a cgroup with relatively small amount of memory and as a result with dirty limit set at 16MB. A task from that cgroup has dirtied about 28MB worth of pages in btrfs btree inode and these were practically the only dirty pages in that cgroup. So that means the only way to reduce the dirty pages of that cgroup is to writeback the dirty pages of btrfs btree inode, and only after that those processes can exit balance_dirty_pages(). Now back to the btrfs part, btree_writepages() is responsible for writing back dirty btree inode pages. The problem here is, there is a btrfs internal threshold that if the btree inode's dirty bytes are below the 32M threshold, it will not do any writeback. This behavior is to batch as much metadata as possible so we won't write back those tree blocks and then later re-COW them again for another modification. This internal 32MiB is higher than the existing dirty page size (28MiB), meaning no writeback will happen, causing a deadlock between btrfs and cgroup: - Btrfs doesn't want to write back btree inode until more dirty pages - Cgroup/MM doesn't want more dirty pages for btrfs btree inode Thus any process touching that btree inode is put into sleep until the number of dirty pages is reduced. Thanks Jan Kara a lot for the analysis of the root cause. [ENHANCEMENT] Since kernel commit b55102826d7d ("btrfs: set AS_KERNEL_FILE on the btree_inode"), btrfs btree inode pages will only be charged to the root cgroup which should have a much larger limit than btrfs' 32MiB threshold. So it should not affect newer kernels. But for all current LTS kernels, they are all affected by this problem, and backporting the whole AS_KERNEL_FILE may not be a good idea. Even for newer kernels I still think it's a good idea to get rid of the internal threshold at btree_writepages(), since for most cases cgroup/MM has a better view of full system memory usage than btrfs' fixed threshold. For internal callers using btrfs_btree_balance_dirty() since that function is already doing internal threshold check, we don't need to bother them. But for external callers of btree_writepages(), just respect their requests and write back whatever they want, ignoring the internal btrfs threshold to avoid such deadlock on btree inode dirty page balancing.
CVE-2026-23158 1 Linux 1 Linux Kernel 2026-02-16 N/A
In the Linux kernel, the following vulnerability has been resolved: gpio: virtuser: fix UAF in configfs release path The gpio-virtuser configfs release path uses guard(mutex) to protect the device structure. However, the device is freed before the guard cleanup runs, causing mutex_unlock() to operate on freed memory. Specifically, gpio_virtuser_device_config_group_release() destroys the mutex and frees the device while still inside the guard(mutex) scope. When the function returns, the guard cleanup invokes mutex_unlock(&dev->lock), resulting in a slab use-after-free. Limit the mutex lifetime by using a scoped_guard() only around the activation check, so that the lock is released before mutex_destroy() and kfree() are called.
CVE-2026-23159 1 Linux 1 Linux Kernel 2026-02-16 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: perf: sched: Fix perf crash with new is_user_task() helper In order to do a user space stacktrace the current task needs to be a user task that has executed in user space. It use to be possible to test if a task is a user task or not by simply checking the task_struct mm field. If it was non NULL, it was a user task and if not it was a kernel task. But things have changed over time, and some kernel tasks now have their own mm field. An idea was made to instead test PF_KTHREAD and two functions were used to wrap this check in case it became more complex to test if a task was a user task or not[1]. But this was rejected and the C code simply checked the PF_KTHREAD directly. It was later found that not all kernel threads set PF_KTHREAD. The io-uring helpers instead set PF_USER_WORKER and this needed to be added as well. But checking the flags is still not enough. There's a very small window when a task exits that it frees its mm field and it is set back to NULL. If perf were to trigger at this moment, the flags test would say its a user space task but when perf would read the mm field it would crash with at NULL pointer dereference. Now there are flags that can be used to test if a task is exiting, but they are set in areas that perf may still want to profile the user space task (to see where it exited). The only real test is to check both the flags and the mm field. Instead of making this modification in every location, create a new is_user_task() helper function that does all the tests needed to know if it is safe to read the user space memory or not. [1] https://lore.kernel.org/all/20250425204120.639530125@goodmis.org/
CVE-2026-23160 1 Linux 1 Linux Kernel 2026-02-16 N/A
In the Linux kernel, the following vulnerability has been resolved: octeon_ep: Fix memory leak in octep_device_setup() In octep_device_setup(), if octep_ctrl_net_init() fails, the function returns directly without unmapping the mapped resources and freeing the allocated configuration memory. Fix this by jumping to the unsupported_dev label, which performs the necessary cleanup. This aligns with the error handling logic of other paths in this function. Compile tested only. Issue found using a prototype static analysis tool and code review.
CVE-2026-23161 1 Linux 1 Linux Kernel 2026-02-16 N/A
In the Linux kernel, the following vulnerability has been resolved: mm/shmem, swap: fix race of truncate and swap entry split The helper for shmem swap freeing is not handling the order of swap entries correctly. It uses xa_cmpxchg_irq to erase the swap entry, but it gets the entry order before that using xa_get_order without lock protection, and it may get an outdated order value if the entry is split or changed in other ways after the xa_get_order and before the xa_cmpxchg_irq. And besides, the order could grow and be larger than expected, and cause truncation to erase data beyond the end border. For example, if the target entry and following entries are swapped in or freed, then a large folio was added in place and swapped out, using the same entry, the xa_cmpxchg_irq will still succeed, it's very unlikely to happen though. To fix that, open code the Xarray cmpxchg and put the order retrieval and value checking in the same critical section. Also, ensure the order won't exceed the end border, skip it if the entry goes across the border. Skipping large swap entries crosses the end border is safe here. Shmem truncate iterates the range twice, in the first iteration, find_lock_entries already filtered such entries, and shmem will swapin the entries that cross the end border and partially truncate the folio (split the folio or at least zero part of it). So in the second loop here, if we see a swap entry that crosses the end order, it must at least have its content erased already. I observed random swapoff hangs and kernel panics when stress testing ZSWAP with shmem. After applying this patch, all problems are gone.
CVE-2026-23162 1 Linux 1 Linux Kernel 2026-02-16 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/xe/nvm: Fix double-free on aux add failure After a successful auxiliary_device_init(), aux_dev->dev.release (xe_nvm_release_dev()) is responsible for the kfree(nvm). When there is failure with auxiliary_device_add(), driver will call auxiliary_device_uninit(), which call put_device(). So that the .release callback will be triggered to free the memory associated with the auxiliary_device. Move the kfree(nvm) into the auxiliary_device_init() failure path and remove the err goto path to fix below error. " [ 13.232905] ================================================================== [ 13.232911] BUG: KASAN: double-free in xe_nvm_init+0x751/0xf10 [xe] [ 13.233112] Free of addr ffff888120635000 by task systemd-udevd/273 [ 13.233120] CPU: 8 UID: 0 PID: 273 Comm: systemd-udevd Not tainted 6.19.0-rc2-lgci-xe-kernel+ #225 PREEMPT(voluntary) ... [ 13.233125] Call Trace: [ 13.233126] <TASK> [ 13.233127] dump_stack_lvl+0x7f/0xc0 [ 13.233132] print_report+0xce/0x610 [ 13.233136] ? kasan_complete_mode_report_info+0x5d/0x1e0 [ 13.233139] ? xe_nvm_init+0x751/0xf10 [xe] ... " v2: drop err goto path. (Alexander) (cherry picked from commit a3187c0c2bbd947ffff97f90d077ac88f9c2a215)
CVE-2026-23163 1 Linux 1 Linux Kernel 2026-02-16 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix NULL pointer dereference in amdgpu_gmc_filter_faults_remove On APUs such as Raven and Renoir (GC 9.1.0, 9.2.2, 9.3.0), the ih1 and ih2 interrupt ring buffers are not initialized. This is by design, as these secondary IH rings are only available on discrete GPUs. See vega10_ih_sw_init() which explicitly skips ih1/ih2 initialization when AMD_IS_APU is set. However, amdgpu_gmc_filter_faults_remove() unconditionally uses ih1 to get the timestamp of the last interrupt entry. When retry faults are enabled on APUs (noretry=0), this function is called from the SVM page fault recovery path, resulting in a NULL pointer dereference when amdgpu_ih_decode_iv_ts_helper() attempts to access ih->ring[]. The crash manifests as: BUG: kernel NULL pointer dereference, address: 0000000000000004 RIP: 0010:amdgpu_ih_decode_iv_ts_helper+0x22/0x40 [amdgpu] Call Trace: amdgpu_gmc_filter_faults_remove+0x60/0x130 [amdgpu] svm_range_restore_pages+0xae5/0x11c0 [amdgpu] amdgpu_vm_handle_fault+0xc8/0x340 [amdgpu] gmc_v9_0_process_interrupt+0x191/0x220 [amdgpu] amdgpu_irq_dispatch+0xed/0x2c0 [amdgpu] amdgpu_ih_process+0x84/0x100 [amdgpu] This issue was exposed by commit 1446226d32a4 ("drm/amdgpu: Remove GC HW IP 9.3.0 from noretry=1") which changed the default for Renoir APU from noretry=1 to noretry=0, enabling retry fault handling and thus exercising the buggy code path. Fix this by adding a check for ih1.ring_size before attempting to use it. Also restore the soft_ih support from commit dd299441654f ("drm/amdgpu: Rework retry fault removal"). This is needed if the hardware doesn't support secondary HW IH rings. v2: additional updates (Alex) (cherry picked from commit 6ce8d536c80aa1f059e82184f0d1994436b1d526)
CVE-2026-2544 1 Yued-fe 1 Lulu Ui 2026-02-16 7.3 High
A security flaw has been discovered in yued-fe LuLu UI up to 3.0.0. This issue affects the function child_process.exec of the file run.js. The manipulation results in os command injection. The attack can be launched remotely. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2026-2546 1 Ligerosmart 1 Ligerosmart 2026-02-16 3.5 Low
A security vulnerability has been detected in LigeroSmart up to 6.1.26. The affected element is an unknown function of the file /otrs/index.pl. Such manipulation of the argument SortBy leads to cross site scripting. The attack may be launched remotely. The exploit has been disclosed publicly and may be used. The project was informed of the problem early through an issue report but has not responded yet.
CVE-2026-2547 1 Ligerosmart 1 Ligerosmart 2026-02-16 3.5 Low
A vulnerability was detected in LigeroSmart up to 6.1.26. The impacted element is the function AgentDashboard of the file /otrs/index.pl. Performing a manipulation of the argument Subaction results in cross site scripting. Remote exploitation of the attack is possible. The exploit is now public and may be used. The project was informed of the problem early through an issue report but has not responded yet.
CVE-2026-2548 1 Wayos 1 Fbm-220g 2026-02-16 6.3 Medium
A flaw has been found in WAYOS FBM-220G 24.10.19. This affects the function sub_40F820 of the file rc. Executing a manipulation of the argument upnp_waniface/upnp_ssdp_interval/upnp_max_age can lead to command injection. The attack can be executed remotely. The vendor was contacted early about this disclosure but did not respond in any way.
CVE-2026-2549 1 Zhanghuanhao 1 Librarysystem 2026-02-16 7.3 High
A vulnerability has been found in zhanghuanhao LibrarySystem 图书馆管理系统 up to 1.1.1. This impacts an unknown function of the file BookController.java. The manipulation leads to improper access controls. The attack is possible to be carried out remotely. The exploit has been disclosed to the public and may be used. The project was informed of the problem early through an issue report but has not responded yet.
CVE-2026-0999 1 Mattermost 1 Mattermost 2026-02-16 5.4 Medium
Mattermost versions 11.1.x <= 11.1.2, 10.11.x <= 10.11.9, 11.2.x <= 11.2.1 fail to properly validate login method restrictions which allows an authenticated user to bypass SSO-only login requirements via userID-based authentication. Mattermost Advisory ID: MMSA-2025-00548
CVE-2026-2577 1 Hkuds 1 Nanobot 2026-02-16 10 Critical
The WhatsApp bridge component in Nanobot binds the WebSocket server to all network interfaces (0.0.0.0) on port 3001 by default and does not require authentication for incoming connections. An unauthenticated remote attacker with network access to the bridge can connect to the WebSocket server to hijack the WhatsApp session. This allows the attacker to send messages on behalf of the user, intercept all incoming messages and media in real-time, and capture authentication QR codes.
CVE-2026-0998 1 Mattermost 1 Mattermost 2026-02-16 4.3 Medium
Mattermost versions 11.1.x <= 11.1.2, 10.11.x <= 10.11.9, 11.2.x <= 11.2.1 and Mattermost Plugin Zoom versions <=1.11.0 fail to validate user identity and post ownership in the {{/api/v1/askPMI}} endpoint which allows unauthorized users to start Zoom meetings as any user and overwrite arbitrary posts via direct API calls with manipulated user IDs and post data.. Mattermost Advisory ID: MMSA-2025-00534