Search

Search Results (331471 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-23005 1 Linux 1 Linux Kernel 2026-02-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Clear XSTATE_BV[i] in guest XSAVE state whenever XFD[i]=1 When loading guest XSAVE state via KVM_SET_XSAVE, and when updating XFD in response to a guest WRMSR, clear XFD-disabled features in the saved (or to be restored) XSTATE_BV to ensure KVM doesn't attempt to load state for features that are disabled via the guest's XFD. Because the kernel executes XRSTOR with the guest's XFD, saving XSTATE_BV[i]=1 with XFD[i]=1 will cause XRSTOR to #NM and panic the kernel. E.g. if fpu_update_guest_xfd() sets XFD without clearing XSTATE_BV: ------------[ cut here ]------------ WARNING: arch/x86/kernel/traps.c:1524 at exc_device_not_available+0x101/0x110, CPU#29: amx_test/848 Modules linked in: kvm_intel kvm irqbypass CPU: 29 UID: 1000 PID: 848 Comm: amx_test Not tainted 6.19.0-rc2-ffa07f7fd437-x86_amx_nm_xfd_non_init-vm #171 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:exc_device_not_available+0x101/0x110 Call Trace: <TASK> asm_exc_device_not_available+0x1a/0x20 RIP: 0010:restore_fpregs_from_fpstate+0x36/0x90 switch_fpu_return+0x4a/0xb0 kvm_arch_vcpu_ioctl_run+0x1245/0x1e40 [kvm] kvm_vcpu_ioctl+0x2c3/0x8f0 [kvm] __x64_sys_ioctl+0x8f/0xd0 do_syscall_64+0x62/0x940 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK> ---[ end trace 0000000000000000 ]--- This can happen if the guest executes WRMSR(MSR_IA32_XFD) to set XFD[18] = 1, and a host IRQ triggers kernel_fpu_begin() prior to the vmexit handler's call to fpu_update_guest_xfd(). and if userspace stuffs XSTATE_BV[i]=1 via KVM_SET_XSAVE: ------------[ cut here ]------------ WARNING: arch/x86/kernel/traps.c:1524 at exc_device_not_available+0x101/0x110, CPU#14: amx_test/867 Modules linked in: kvm_intel kvm irqbypass CPU: 14 UID: 1000 PID: 867 Comm: amx_test Not tainted 6.19.0-rc2-2dace9faccd6-x86_amx_nm_xfd_non_init-vm #168 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:exc_device_not_available+0x101/0x110 Call Trace: <TASK> asm_exc_device_not_available+0x1a/0x20 RIP: 0010:restore_fpregs_from_fpstate+0x36/0x90 fpu_swap_kvm_fpstate+0x6b/0x120 kvm_load_guest_fpu+0x30/0x80 [kvm] kvm_arch_vcpu_ioctl_run+0x85/0x1e40 [kvm] kvm_vcpu_ioctl+0x2c3/0x8f0 [kvm] __x64_sys_ioctl+0x8f/0xd0 do_syscall_64+0x62/0x940 entry_SYSCALL_64_after_hwframe+0x4b/0x53 </TASK> ---[ end trace 0000000000000000 ]--- The new behavior is consistent with the AMX architecture. Per Intel's SDM, XSAVE saves XSTATE_BV as '0' for components that are disabled via XFD (and non-compacted XSAVE saves the initial configuration of the state component): If XSAVE, XSAVEC, XSAVEOPT, or XSAVES is saving the state component i, the instruction does not generate #NM when XCR0[i] = IA32_XFD[i] = 1; instead, it operates as if XINUSE[i] = 0 (and the state component was in its initial state): it saves bit i of XSTATE_BV field of the XSAVE header as 0; in addition, XSAVE saves the initial configuration of the state component (the other instructions do not save state component i). Alternatively, KVM could always do XRSTOR with XFD=0, e.g. by using a constant XFD based on the set of enabled features when XSAVEing for a struct fpu_guest. However, having XSTATE_BV[i]=1 for XFD-disabled features can only happen in the above interrupt case, or in similar scenarios involving preemption on preemptible kernels, because fpu_swap_kvm_fpstate()'s call to save_fpregs_to_fpstate() saves the outgoing FPU state with the current XFD; and that is (on all but the first WRMSR to XFD) the guest XFD. Therefore, XFD can only go out of sync with XSTATE_BV in the above interrupt case, or in similar scenarios involving preemption on preemptible kernels, and it we can consider it (de facto) part of KVM ABI that KVM_GET_XSAVE returns XSTATE_BV[i]=0 for XFD-disabled features. [Move clea ---truncated---
CVE-2026-23003 1 Linux 1 Linux Kernel 2026-02-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ip6_tunnel: use skb_vlan_inet_prepare() in __ip6_tnl_rcv() Blamed commit did not take care of VLAN encapsulations as spotted by syzbot [1]. Use skb_vlan_inet_prepare() instead of pskb_inet_may_pull(). [1] BUG: KMSAN: uninit-value in __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] BUG: KMSAN: uninit-value in INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] BUG: KMSAN: uninit-value in IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321 __INET_ECN_decapsulate include/net/inet_ecn.h:253 [inline] INET_ECN_decapsulate include/net/inet_ecn.h:275 [inline] IP6_ECN_decapsulate+0x7a8/0x1fa0 include/net/inet_ecn.h:321 ip6ip6_dscp_ecn_decapsulate+0x16f/0x1b0 net/ipv6/ip6_tunnel.c:729 __ip6_tnl_rcv+0xed9/0x1b50 net/ipv6/ip6_tunnel.c:860 ip6_tnl_rcv+0xc3/0x100 net/ipv6/ip6_tunnel.c:903 gre_rcv+0x1529/0x1b90 net/ipv6/ip6_gre.c:-1 ip6_protocol_deliver_rcu+0x1c89/0x2c60 net/ipv6/ip6_input.c:438 ip6_input_finish+0x1f4/0x4a0 net/ipv6/ip6_input.c:489 NF_HOOK include/linux/netfilter.h:318 [inline] ip6_input+0x9c/0x330 net/ipv6/ip6_input.c:500 ip6_mc_input+0x7ca/0xc10 net/ipv6/ip6_input.c:590 dst_input include/net/dst.h:474 [inline] ip6_rcv_finish+0x958/0x990 net/ipv6/ip6_input.c:79 NF_HOOK include/linux/netfilter.h:318 [inline] ipv6_rcv+0xf1/0x3c0 net/ipv6/ip6_input.c:311 __netif_receive_skb_one_core net/core/dev.c:6139 [inline] __netif_receive_skb+0x1df/0xac0 net/core/dev.c:6252 netif_receive_skb_internal net/core/dev.c:6338 [inline] netif_receive_skb+0x57/0x630 net/core/dev.c:6397 tun_rx_batched+0x1df/0x980 drivers/net/tun.c:1485 tun_get_user+0x5c0e/0x6c60 drivers/net/tun.c:1953 tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999 new_sync_write fs/read_write.c:593 [inline] vfs_write+0xbe2/0x15d0 fs/read_write.c:686 ksys_write fs/read_write.c:738 [inline] __do_sys_write fs/read_write.c:749 [inline] __se_sys_write fs/read_write.c:746 [inline] __x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746 x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was created at: slab_post_alloc_hook mm/slub.c:4960 [inline] slab_alloc_node mm/slub.c:5263 [inline] kmem_cache_alloc_node_noprof+0x9e7/0x17a0 mm/slub.c:5315 kmalloc_reserve+0x13c/0x4b0 net/core/skbuff.c:586 __alloc_skb+0x805/0x1040 net/core/skbuff.c:690 alloc_skb include/linux/skbuff.h:1383 [inline] alloc_skb_with_frags+0xc5/0xa60 net/core/skbuff.c:6712 sock_alloc_send_pskb+0xacc/0xc60 net/core/sock.c:2995 tun_alloc_skb drivers/net/tun.c:1461 [inline] tun_get_user+0x1142/0x6c60 drivers/net/tun.c:1794 tun_chr_write_iter+0x3e9/0x5c0 drivers/net/tun.c:1999 new_sync_write fs/read_write.c:593 [inline] vfs_write+0xbe2/0x15d0 fs/read_write.c:686 ksys_write fs/read_write.c:738 [inline] __do_sys_write fs/read_write.c:749 [inline] __se_sys_write fs/read_write.c:746 [inline] __x64_sys_write+0x1fb/0x4d0 fs/read_write.c:746 x64_sys_call+0x30ab/0x3e70 arch/x86/include/generated/asm/syscalls_64.h:2 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xd3/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f CPU: 0 UID: 0 PID: 6465 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(none) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025
CVE-2026-23001 1 Linux 1 Linux Kernel 2026-02-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: macvlan: fix possible UAF in macvlan_forward_source() Add RCU protection on (struct macvlan_source_entry)->vlan. Whenever macvlan_hash_del_source() is called, we must clear entry->vlan pointer before RCU grace period starts. This allows macvlan_forward_source() to skip over entries queued for freeing. Note that macvlan_dev are already RCU protected, as they are embedded in a standard netdev (netdev_priv(ndev)). https: //lore.kernel.org/netdev/695fb1e8.050a0220.1c677c.039f.GAE@google.com/T/#u
CVE-2026-22999 1 Linux 1 Linux Kernel 2026-02-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_qfq: do not free existing class in qfq_change_class() Fixes qfq_change_class() error case. cl->qdisc and cl should only be freed if a new class and qdisc were allocated, or we risk various UAF.
CVE-2026-22998 1 Linux 1 Linux Kernel 2026-02-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: nvme-tcp: fix NULL pointer dereferences in nvmet_tcp_build_pdu_iovec Commit efa56305908b ("nvmet-tcp: Fix a kernel panic when host sends an invalid H2C PDU length") added ttag bounds checking and data_offset validation in nvmet_tcp_handle_h2c_data_pdu(), but it did not validate whether the command's data structures (cmd->req.sg and cmd->iov) have been properly initialized before processing H2C_DATA PDUs. The nvmet_tcp_build_pdu_iovec() function dereferences these pointers without NULL checks. This can be triggered by sending H2C_DATA PDU immediately after the ICREQ/ICRESP handshake, before sending a CONNECT command or NVMe write command. Attack vectors that trigger NULL pointer dereferences: 1. H2C_DATA PDU sent before CONNECT → both pointers NULL 2. H2C_DATA PDU for READ command → cmd->req.sg allocated, cmd->iov NULL 3. H2C_DATA PDU for uninitialized command slot → both pointers NULL The fix validates both cmd->req.sg and cmd->iov before calling nvmet_tcp_build_pdu_iovec(). Both checks are required because: - Uninitialized commands: both NULL - READ commands: cmd->req.sg allocated, cmd->iov NULL - WRITE commands: both allocated
CVE-2026-22997 1 Linux 1 Linux Kernel 2026-02-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: can: j1939: j1939_xtp_rx_rts_session_active(): deactivate session upon receiving the second rts Since j1939_session_deactivate_activate_next() in j1939_tp_rxtimer() is called only when the timer is enabled, we need to call j1939_session_deactivate_activate_next() if we cancelled the timer. Otherwise, refcount for j1939_session leaks, which will later appear as | unregister_netdevice: waiting for vcan0 to become free. Usage count = 2. problem.
CVE-2025-71199 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: iio: adc: at91-sama5d2_adc: Fix potential use-after-free in sama5d2_adc driver at91_adc_interrupt can call at91_adc_touch_data_handler function to start the work by schedule_work(&st->touch_st.workq). If we remove the module which will call at91_adc_remove to make cleanup, it will free indio_dev through iio_device_unregister but quite a bit later. While the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | at91_adc_workq_handler at91_adc_remove | iio_device_unregister(indio_dev) | //free indio_dev a bit later | | iio_push_to_buffers(indio_dev) | //use indio_dev Fix it by ensuring that the work is canceled before proceeding with the cleanup in at91_adc_remove.
CVE-2025-71197 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: w1: therm: Fix off-by-one buffer overflow in alarms_store The sysfs buffer passed to alarms_store() is allocated with 'size + 1' bytes and a NUL terminator is appended. However, the 'size' argument does not account for this extra byte. The original code then allocated 'size' bytes and used strcpy() to copy 'buf', which always writes one byte past the allocated buffer since strcpy() copies until the NUL terminator at index 'size'. Fix this by parsing the 'buf' parameter directly using simple_strtoll() without allocating any intermediate memory or string copying. This removes the overflow while simplifying the code.
CVE-2025-71196 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: phy: stm32-usphyc: Fix off by one in probe() The "index" variable is used as an index into the usbphyc->phys[] array which has usbphyc->nphys elements. So if it is equal to usbphyc->nphys then it is one element out of bounds. The "index" comes from the device tree so it's data that we trust and it's unlikely to be wrong, however it's obviously still worth fixing the bug. Change the > to >=.
CVE-2025-71194 1 Linux 1 Linux Kernel 2026-02-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix deadlock in wait_current_trans() due to ignored transaction type When wait_current_trans() is called during start_transaction(), it currently waits for a blocked transaction without considering whether the given transaction type actually needs to wait for that particular transaction state. The btrfs_blocked_trans_types[] array already defines which transaction types should wait for which transaction states, but this check was missing in wait_current_trans(). This can lead to a deadlock scenario involving two transactions and pending ordered extents: 1. Transaction A is in TRANS_STATE_COMMIT_DOING state 2. A worker processing an ordered extent calls start_transaction() with TRANS_JOIN 3. join_transaction() returns -EBUSY because Transaction A is in TRANS_STATE_COMMIT_DOING 4. Transaction A moves to TRANS_STATE_UNBLOCKED and completes 5. A new Transaction B is created (TRANS_STATE_RUNNING) 6. The ordered extent from step 2 is added to Transaction B's pending ordered extents 7. Transaction B immediately starts commit by another task and enters TRANS_STATE_COMMIT_START 8. The worker finally reaches wait_current_trans(), sees Transaction B in TRANS_STATE_COMMIT_START (a blocked state), and waits unconditionally 9. However, TRANS_JOIN should NOT wait for TRANS_STATE_COMMIT_START according to btrfs_blocked_trans_types[] 10. Transaction B is waiting for pending ordered extents to complete 11. Deadlock: Transaction B waits for ordered extent, ordered extent waits for Transaction B This can be illustrated by the following call stacks: CPU0 CPU1 btrfs_finish_ordered_io() start_transaction(TRANS_JOIN) join_transaction() # -EBUSY (Transaction A is # TRANS_STATE_COMMIT_DOING) # Transaction A completes # Transaction B created # ordered extent added to # Transaction B's pending list btrfs_commit_transaction() # Transaction B enters # TRANS_STATE_COMMIT_START # waiting for pending ordered # extents wait_current_trans() # waits for Transaction B # (should not wait!) Task bstore_kv_sync in btrfs_commit_transaction waiting for ordered extents: __schedule+0x2e7/0x8a0 schedule+0x64/0xe0 btrfs_commit_transaction+0xbf7/0xda0 [btrfs] btrfs_sync_file+0x342/0x4d0 [btrfs] __x64_sys_fdatasync+0x4b/0x80 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Task kworker in wait_current_trans waiting for transaction commit: Workqueue: btrfs-syno_nocow btrfs_work_helper [btrfs] __schedule+0x2e7/0x8a0 schedule+0x64/0xe0 wait_current_trans+0xb0/0x110 [btrfs] start_transaction+0x346/0x5b0 [btrfs] btrfs_finish_ordered_io.isra.0+0x49b/0x9c0 [btrfs] btrfs_work_helper+0xe8/0x350 [btrfs] process_one_work+0x1d3/0x3c0 worker_thread+0x4d/0x3e0 kthread+0x12d/0x150 ret_from_fork+0x1f/0x30 Fix this by passing the transaction type to wait_current_trans() and checking btrfs_blocked_trans_types[cur_trans->state] against the given type before deciding to wait. This ensures that transaction types which are allowed to join during certain blocked states will not unnecessarily wait and cause deadlocks.
CVE-2025-71191 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: at_hdmac: fix device leak on of_dma_xlate() Make sure to drop the reference taken when looking up the DMA platform device during of_dma_xlate() when releasing channel resources. Note that commit 3832b78b3ec2 ("dmaengine: at_hdmac: add missing put_device() call in at_dma_xlate()") fixed the leak in a couple of error paths but the reference is still leaking on successful allocation.
CVE-2025-71190 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: bcm-sba-raid: fix device leak on probe Make sure to drop the reference taken when looking up the mailbox device during probe on probe failures and on driver unbind.
CVE-2025-71189 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: dw: dmamux: fix OF node leak on route allocation failure Make sure to drop the reference taken to the DMA master OF node also on late route allocation failures.
CVE-2025-71188 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: lpc18xx-dmamux: fix device leak on route allocation Make sure to drop the reference taken when looking up the DMA mux platform device during route allocation. Note that holding a reference to a device does not prevent its driver data from going away so there is no point in keeping the reference.
CVE-2025-71186 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: stm32: dmamux: fix device leak on route allocation Make sure to drop the reference taken when looking up the DMA mux platform device during route allocation. Note that holding a reference to a device does not prevent its driver data from going away so there is no point in keeping the reference.
CVE-2025-71185 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: ti: dma-crossbar: fix device leak on am335x route allocation Make sure to drop the reference taken when looking up the crossbar platform device during am335x route allocation.
CVE-2025-71163 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: idxd: fix device leaks on compat bind and unbind Make sure to drop the reference taken when looking up the idxd device as part of the compat bind and unbind sysfs interface.
CVE-2025-71162 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: dmaengine: tegra-adma: Fix use-after-free A use-after-free bug exists in the Tegra ADMA driver when audio streams are terminated, particularly during XRUN conditions. The issue occurs when the DMA buffer is freed by tegra_adma_terminate_all() before the vchan completion tasklet finishes accessing it. The race condition follows this sequence: 1. DMA transfer completes, triggering an interrupt that schedules the completion tasklet (tasklet has not executed yet) 2. Audio playback stops, calling tegra_adma_terminate_all() which frees the DMA buffer memory via kfree() 3. The scheduled tasklet finally executes, calling vchan_complete() which attempts to access the already-freed memory Since tasklets can execute at any time after being scheduled, there is no guarantee that the buffer will remain valid when vchan_complete() runs. Fix this by properly synchronizing the virtual channel completion: - Calling vchan_terminate_vdesc() in tegra_adma_stop() to mark the descriptors as terminated instead of freeing the descriptor. - Add the callback tegra_adma_synchronize() that calls vchan_synchronize() which kills any pending tasklets and frees any terminated descriptors. Crash logs: [ 337.427523] BUG: KASAN: use-after-free in vchan_complete+0x124/0x3b0 [ 337.427544] Read of size 8 at addr ffff000132055428 by task swapper/0/0 [ 337.427562] Call trace: [ 337.427564] dump_backtrace+0x0/0x320 [ 337.427571] show_stack+0x20/0x30 [ 337.427575] dump_stack_lvl+0x68/0x84 [ 337.427584] print_address_description.constprop.0+0x74/0x2b8 [ 337.427590] kasan_report+0x1f4/0x210 [ 337.427598] __asan_load8+0xa0/0xd0 [ 337.427603] vchan_complete+0x124/0x3b0 [ 337.427609] tasklet_action_common.constprop.0+0x190/0x1d0 [ 337.427617] tasklet_action+0x30/0x40 [ 337.427623] __do_softirq+0x1a0/0x5c4 [ 337.427628] irq_exit+0x110/0x140 [ 337.427633] handle_domain_irq+0xa4/0xe0 [ 337.427640] gic_handle_irq+0x64/0x160 [ 337.427644] call_on_irq_stack+0x20/0x4c [ 337.427649] do_interrupt_handler+0x7c/0x90 [ 337.427654] el1_interrupt+0x30/0x80 [ 337.427659] el1h_64_irq_handler+0x18/0x30 [ 337.427663] el1h_64_irq+0x7c/0x80 [ 337.427667] cpuidle_enter_state+0xe4/0x540 [ 337.427674] cpuidle_enter+0x54/0x80 [ 337.427679] do_idle+0x2e0/0x380 [ 337.427685] cpu_startup_entry+0x2c/0x70 [ 337.427690] rest_init+0x114/0x130 [ 337.427695] arch_call_rest_init+0x18/0x24 [ 337.427702] start_kernel+0x380/0x3b4 [ 337.427706] __primary_switched+0xc0/0xc8
CVE-2025-70073 1 Liweiyi 1 Chestnutcms 2026-02-06 9.8 Critical
An issue in ChestnutCMS v.1.5.8 and before allows a remote attacker to execute arbitrary code via the template creation function
CVE-2025-68817 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix use-after-free in ksmbd_tree_connect_put under concurrency Under high concurrency, A tree-connection object (tcon) is freed on a disconnect path while another path still holds a reference and later executes *_put()/write on it.