Search

Search Results (333013 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-23182 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: spi: tegra: Fix a memory leak in tegra_slink_probe() In tegra_slink_probe(), when platform_get_irq() fails, it directly returns from the function with an error code, which causes a memory leak. Replace it with a goto label to ensure proper cleanup.
CVE-2026-23180 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: dpaa2-switch: add bounds check for if_id in IRQ handler The IRQ handler extracts if_id from the upper 16 bits of the hardware status register and uses it to index into ethsw->ports[] without validation. Since if_id can be any 16-bit value (0-65535) but the ports array is only allocated with sw_attr.num_ifs elements, this can lead to an out-of-bounds read potentially. Add a bounds check before accessing the array, consistent with the existing validation in dpaa2_switch_rx().
CVE-2026-23177 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: mm, shmem: prevent infinite loop on truncate race When truncating a large swap entry, shmem_free_swap() returns 0 when the entry's index doesn't match the given index due to lookup alignment. The failure fallback path checks if the entry crosses the end border and aborts when it happens, so truncate won't erase an unexpected entry or range. But one scenario was ignored. When `index` points to the middle of a large swap entry, and the large swap entry doesn't go across the end border, find_get_entries() will return that large swap entry as the first item in the batch with `indices[0]` equal to `index`. The entry's base index will be smaller than `indices[0]`, so shmem_free_swap() will fail and return 0 due to the "base < index" check. The code will then call shmem_confirm_swap(), get the order, check if it crosses the END boundary (which it doesn't), and retry with the same index. The next iteration will find the same entry again at the same index with same indices, leading to an infinite loop. Fix this by retrying with a round-down index, and abort if the index is smaller than the truncate range.
CVE-2026-23176 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: platform/x86: toshiba_haps: Fix memory leaks in add/remove routines toshiba_haps_add() leaks the haps object allocated by it if it returns an error after allocating that object successfully. toshiba_haps_remove() does not free the object pointed to by toshiba_haps before clearing that pointer, so it becomes unreachable allocated memory. Address these memory leaks by using devm_kzalloc() for allocating the memory in question.
CVE-2026-23175 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net: cpsw: Execute ndo_set_rx_mode callback in a work queue Commit 1767bb2d47b7 ("ipv6: mcast: Don't hold RTNL for IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP.") removed the RTNL lock for IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP operations. However, this change triggered the following call trace on my BeagleBone Black board: WARNING: net/8021q/vlan_core.c:236 at vlan_for_each+0x120/0x124, CPU#0: rpcbind/481 RTNL: assertion failed at net/8021q/vlan_core.c (236) Modules linked in: CPU: 0 UID: 997 PID: 481 Comm: rpcbind Not tainted 6.19.0-rc7-next-20260130-yocto-standard+ #35 PREEMPT Hardware name: Generic AM33XX (Flattened Device Tree) Call trace: unwind_backtrace from show_stack+0x28/0x2c show_stack from dump_stack_lvl+0x30/0x38 dump_stack_lvl from __warn+0xb8/0x11c __warn from warn_slowpath_fmt+0x130/0x194 warn_slowpath_fmt from vlan_for_each+0x120/0x124 vlan_for_each from cpsw_add_mc_addr+0x54/0x98 cpsw_add_mc_addr from __hw_addr_ref_sync_dev+0xc4/0xec __hw_addr_ref_sync_dev from __dev_mc_add+0x78/0x88 __dev_mc_add from igmp6_group_added+0x84/0xec igmp6_group_added from __ipv6_dev_mc_inc+0x1fc/0x2f0 __ipv6_dev_mc_inc from __ipv6_sock_mc_join+0x124/0x1b4 __ipv6_sock_mc_join from do_ipv6_setsockopt+0x84c/0x1168 do_ipv6_setsockopt from ipv6_setsockopt+0x88/0xc8 ipv6_setsockopt from do_sock_setsockopt+0xe8/0x19c do_sock_setsockopt from __sys_setsockopt+0x84/0xac __sys_setsockopt from ret_fast_syscall+0x0/0x54 This trace occurs because vlan_for_each() is called within cpsw_ndo_set_rx_mode(), which expects the RTNL lock to be held. Since modifying vlan_for_each() to operate without the RTNL lock is not straightforward, and because ndo_set_rx_mode() is invoked both with and without the RTNL lock across different code paths, simply adding rtnl_lock() in cpsw_ndo_set_rx_mode() is not a viable solution. To resolve this issue, we opt to execute the actual processing within a work queue, following the approach used by the icssg-prueth driver. Please note: To reproduce this issue, I manually reverted the changes to am335x-bone-common.dtsi from commit c477358e66a3 ("ARM: dts: am335x-bone: switch to new cpsw switch drv") in order to revert to the legacy cpsw driver.
CVE-2026-23174 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: nvme-pci: handle changing device dma map requirements The initial state of dma_needs_unmap may be false, but change to true while mapping the data iterator. Enabling swiotlb is one such case that can change the result. The nvme driver needs to save the mapped dma vectors to be unmapped later, so allocate as needed during iteration rather than assume it was always allocated at the beginning. This fixes a NULL dereference from accessing an uninitialized dma_vecs when the device dma unmapping requirements change mid-iteration.
CVE-2026-23173 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: TC, delete flows only for existing peers When deleting TC steering flows, iterate only over actual devcom peers instead of assuming all possible ports exist. This avoids touching non-existent peers and ensures cleanup is limited to devices the driver is currently connected to. BUG: kernel NULL pointer dereference, address: 0000000000000008 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 133c8a067 P4D 0 Oops: Oops: 0002 [#1] SMP CPU: 19 UID: 0 PID: 2169 Comm: tc Not tainted 6.18.0+ #156 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:mlx5e_tc_del_fdb_peers_flow+0xbe/0x200 [mlx5_core] Code: 00 00 a8 08 74 a8 49 8b 46 18 f6 c4 02 74 9f 4c 8d bf a0 12 00 00 4c 89 ff e8 0e e7 96 e1 49 8b 44 24 08 49 8b 0c 24 4c 89 ff <48> 89 41 08 48 89 08 49 89 2c 24 49 89 5c 24 08 e8 7d ce 96 e1 49 RSP: 0018:ff11000143867528 EFLAGS: 00010246 RAX: 0000000000000000 RBX: dead000000000122 RCX: 0000000000000000 RDX: ff11000143691580 RSI: ff110001026e5000 RDI: ff11000106f3d2a0 RBP: dead000000000100 R08: 00000000000003fd R09: 0000000000000002 R10: ff11000101c75690 R11: ff1100085faea178 R12: ff11000115f0ae78 R13: 0000000000000000 R14: ff11000115f0a800 R15: ff11000106f3d2a0 FS: 00007f35236bf740(0000) GS:ff110008dc809000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 0000000157a01001 CR4: 0000000000373eb0 Call Trace: <TASK> mlx5e_tc_del_flow+0x46/0x270 [mlx5_core] mlx5e_flow_put+0x25/0x50 [mlx5_core] mlx5e_delete_flower+0x2a6/0x3e0 [mlx5_core] tc_setup_cb_reoffload+0x20/0x80 fl_reoffload+0x26f/0x2f0 [cls_flower] ? mlx5e_tc_reoffload_flows_work+0xc0/0xc0 [mlx5_core] ? mlx5e_tc_reoffload_flows_work+0xc0/0xc0 [mlx5_core] tcf_block_playback_offloads+0x9e/0x1c0 tcf_block_unbind+0x7b/0xd0 tcf_block_setup+0x186/0x1d0 tcf_block_offload_cmd.isra.0+0xef/0x130 tcf_block_offload_unbind+0x43/0x70 __tcf_block_put+0x85/0x160 ingress_destroy+0x32/0x110 [sch_ingress] __qdisc_destroy+0x44/0x100 qdisc_graft+0x22b/0x610 tc_get_qdisc+0x183/0x4d0 rtnetlink_rcv_msg+0x2d7/0x3d0 ? rtnl_calcit.isra.0+0x100/0x100 netlink_rcv_skb+0x53/0x100 netlink_unicast+0x249/0x320 ? __alloc_skb+0x102/0x1f0 netlink_sendmsg+0x1e3/0x420 __sock_sendmsg+0x38/0x60 ____sys_sendmsg+0x1ef/0x230 ? copy_msghdr_from_user+0x6c/0xa0 ___sys_sendmsg+0x7f/0xc0 ? ___sys_recvmsg+0x8a/0xc0 ? __sys_sendto+0x119/0x180 __sys_sendmsg+0x61/0xb0 do_syscall_64+0x55/0x640 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f35238bb764 Code: 15 b9 86 0c 00 f7 d8 64 89 02 b8 ff ff ff ff eb bf 0f 1f 44 00 00 f3 0f 1e fa 80 3d e5 08 0d 00 00 74 13 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 4c c3 0f 1f 00 55 48 89 e5 48 83 ec 20 89 55 RSP: 002b:00007ffed4c35638 EFLAGS: 00000202 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 000055a2efcc75e0 RCX: 00007f35238bb764 RDX: 0000000000000000 RSI: 00007ffed4c356a0 RDI: 0000000000000003 RBP: 00007ffed4c35710 R08: 0000000000000010 R09: 00007f3523984b20 R10: 0000000000000004 R11: 0000000000000202 R12: 00007ffed4c35790 R13: 000000006947df8f R14: 000055a2efcc75e0 R15: 00007ffed4c35780
CVE-2026-23172 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net: wwan: t7xx: fix potential skb->frags overflow in RX path When receiving data in the DPMAIF RX path, the t7xx_dpmaif_set_frag_to_skb() function adds page fragments to an skb without checking if the number of fragments has exceeded MAX_SKB_FRAGS. This could lead to a buffer overflow in skb_shinfo(skb)->frags[] array, corrupting adjacent memory and potentially causing kernel crashes or other undefined behavior. This issue was identified through static code analysis by comparing with a similar vulnerability fixed in the mt76 driver commit b102f0c522cf ("mt76: fix array overflow on receiving too many fragments for a packet"). The vulnerability could be triggered if the modem firmware sends packets with excessive fragments. While under normal protocol conditions (MTU 3080 bytes, BAT buffer 3584 bytes), a single packet should not require additional fragments, the kernel should not blindly trust firmware behavior. Malicious, buggy, or compromised firmware could potentially craft packets with more fragments than the kernel expects. Fix this by adding a bounds check before calling skb_add_rx_frag() to ensure nr_frags does not exceed MAX_SKB_FRAGS. The check must be performed before unmapping to avoid a page leak and double DMA unmap during device teardown.
CVE-2026-23171 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: bonding: fix use-after-free due to enslave fail after slave array update Fix a use-after-free which happens due to enslave failure after the new slave has been added to the array. Since the new slave can be used for Tx immediately, we can use it after it has been freed by the enslave error cleanup path which frees the allocated slave memory. Slave update array is supposed to be called last when further enslave failures are not expected. Move it after xdp setup to avoid any problems. It is very easy to reproduce the problem with a simple xdp_pass prog: ip l add bond1 type bond mode balance-xor ip l set bond1 up ip l set dev bond1 xdp object xdp_pass.o sec xdp_pass ip l add dumdum type dummy Then run in parallel: while :; do ip l set dumdum master bond1 1>/dev/null 2>&1; done; mausezahn bond1 -a own -b rand -A rand -B 1.1.1.1 -c 0 -t tcp "dp=1-1023, flags=syn" The crash happens almost immediately: [ 605.602850] Oops: general protection fault, probably for non-canonical address 0xe0e6fc2460000137: 0000 [#1] SMP KASAN NOPTI [ 605.602916] KASAN: maybe wild-memory-access in range [0x07380123000009b8-0x07380123000009bf] [ 605.602946] CPU: 0 UID: 0 PID: 2445 Comm: mausezahn Kdump: loaded Tainted: G B 6.19.0-rc6+ #21 PREEMPT(voluntary) [ 605.602979] Tainted: [B]=BAD_PAGE [ 605.602998] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 605.603032] RIP: 0010:netdev_core_pick_tx+0xcd/0x210 [ 605.603063] Code: 48 89 fa 48 c1 ea 03 80 3c 02 00 0f 85 3e 01 00 00 48 b8 00 00 00 00 00 fc ff df 4c 8b 6b 08 49 8d 7d 30 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 25 01 00 00 49 8b 45 30 4c 89 e2 48 89 ee 48 89 [ 605.603111] RSP: 0018:ffff88817b9af348 EFLAGS: 00010213 [ 605.603145] RAX: dffffc0000000000 RBX: ffff88817d28b420 RCX: 0000000000000000 [ 605.603172] RDX: 00e7002460000137 RSI: 0000000000000008 RDI: 07380123000009be [ 605.603199] RBP: ffff88817b541a00 R08: 0000000000000001 R09: fffffbfff3ed8c0c [ 605.603226] R10: ffffffff9f6c6067 R11: 0000000000000001 R12: 0000000000000000 [ 605.603253] R13: 073801230000098e R14: ffff88817d28b448 R15: ffff88817b541a84 [ 605.603286] FS: 00007f6570ef67c0(0000) GS:ffff888221dfa000(0000) knlGS:0000000000000000 [ 605.603319] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 605.603343] CR2: 00007f65712fae40 CR3: 000000011371b000 CR4: 0000000000350ef0 [ 605.603373] Call Trace: [ 605.603392] <TASK> [ 605.603410] __dev_queue_xmit+0x448/0x32a0 [ 605.603434] ? __pfx_vprintk_emit+0x10/0x10 [ 605.603461] ? __pfx_vprintk_emit+0x10/0x10 [ 605.603484] ? __pfx___dev_queue_xmit+0x10/0x10 [ 605.603507] ? bond_start_xmit+0xbfb/0xc20 [bonding] [ 605.603546] ? _printk+0xcb/0x100 [ 605.603566] ? __pfx__printk+0x10/0x10 [ 605.603589] ? bond_start_xmit+0xbfb/0xc20 [bonding] [ 605.603627] ? add_taint+0x5e/0x70 [ 605.603648] ? add_taint+0x2a/0x70 [ 605.603670] ? end_report.cold+0x51/0x75 [ 605.603693] ? bond_start_xmit+0xbfb/0xc20 [bonding] [ 605.603731] bond_start_xmit+0x623/0xc20 [bonding]
CVE-2026-23170 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/imx/tve: fix probe device leak Make sure to drop the reference taken to the DDC device during probe on probe failure (e.g. probe deferral) and on driver unbind.
CVE-2026-23168 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: flex_proportions: make fprop_new_period() hardirq safe Bernd has reported a lockdep splat from flexible proportions code that is essentially complaining about the following race: <timer fires> run_timer_softirq - we are in softirq context call_timer_fn writeout_period fprop_new_period write_seqcount_begin(&p->sequence); <hardirq is raised> ... blk_mq_end_request() blk_update_request() ext4_end_bio() folio_end_writeback() __wb_writeout_add() __fprop_add_percpu_max() if (unlikely(max_frac < FPROP_FRAC_BASE)) { fprop_fraction_percpu() seq = read_seqcount_begin(&p->sequence); - sees odd sequence so loops indefinitely Note that a deadlock like this is only possible if the bdi has configured maximum fraction of writeout throughput which is very rare in general but frequent for example for FUSE bdis. To fix this problem we have to make sure write section of the sequence counter is irqsafe.
CVE-2026-23167 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: nfc: nci: Fix race between rfkill and nci_unregister_device(). syzbot reported the splat below [0] without a repro. It indicates that struct nci_dev.cmd_wq had been destroyed before nci_close_device() was called via rfkill. nci_dev.cmd_wq is only destroyed in nci_unregister_device(), which (I think) was called from virtual_ncidev_close() when syzbot close()d an fd of virtual_ncidev. The problem is that nci_unregister_device() destroys nci_dev.cmd_wq first and then calls nfc_unregister_device(), which removes the device from rfkill by rfkill_unregister(). So, the device is still visible via rfkill even after nci_dev.cmd_wq is destroyed. Let's unregister the device from rfkill first in nci_unregister_device(). Note that we cannot call nfc_unregister_device() before nci_close_device() because 1) nfc_unregister_device() calls device_del() which frees all memory allocated by devm_kzalloc() and linked to ndev->conn_info_list 2) nci_rx_work() could try to queue nci_conn_info to ndev->conn_info_list which could be leaked Thus, nfc_unregister_device() is split into two functions so we can remove rfkill interfaces only before nci_close_device(). [0]: DEBUG_LOCKS_WARN_ON(1) WARNING: kernel/locking/lockdep.c:238 at hlock_class kernel/locking/lockdep.c:238 [inline], CPU#0: syz.0.8675/6349 WARNING: kernel/locking/lockdep.c:238 at check_wait_context kernel/locking/lockdep.c:4854 [inline], CPU#0: syz.0.8675/6349 WARNING: kernel/locking/lockdep.c:238 at __lock_acquire+0x39d/0x2cf0 kernel/locking/lockdep.c:5187, CPU#0: syz.0.8675/6349 Modules linked in: CPU: 0 UID: 0 PID: 6349 Comm: syz.0.8675 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/13/2026 RIP: 0010:hlock_class kernel/locking/lockdep.c:238 [inline] RIP: 0010:check_wait_context kernel/locking/lockdep.c:4854 [inline] RIP: 0010:__lock_acquire+0x3a4/0x2cf0 kernel/locking/lockdep.c:5187 Code: 18 00 4c 8b 74 24 08 75 27 90 e8 17 f2 fc 02 85 c0 74 1c 83 3d 50 e0 4e 0e 00 75 13 48 8d 3d 43 f7 51 0e 48 c7 c6 8b 3a de 8d <67> 48 0f b9 3a 90 31 c0 0f b6 98 c4 00 00 00 41 8b 45 20 25 ff 1f RSP: 0018:ffffc9000c767680 EFLAGS: 00010046 RAX: 0000000000000001 RBX: 0000000000040000 RCX: 0000000000080000 RDX: ffffc90013080000 RSI: ffffffff8dde3a8b RDI: ffffffff8ff24ca0 RBP: 0000000000000003 R08: ffffffff8fef35a3 R09: 1ffffffff1fde6b4 R10: dffffc0000000000 R11: fffffbfff1fde6b5 R12: 00000000000012a2 R13: ffff888030338ba8 R14: ffff888030338000 R15: ffff888030338b30 FS: 00007fa5995f66c0(0000) GS:ffff8881256f8000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f7e72f842d0 CR3: 00000000485a0000 CR4: 00000000003526f0 Call Trace: <TASK> lock_acquire+0x106/0x330 kernel/locking/lockdep.c:5868 touch_wq_lockdep_map+0xcb/0x180 kernel/workqueue.c:3940 __flush_workqueue+0x14b/0x14f0 kernel/workqueue.c:3982 nci_close_device+0x302/0x630 net/nfc/nci/core.c:567 nci_dev_down+0x3b/0x50 net/nfc/nci/core.c:639 nfc_dev_down+0x152/0x290 net/nfc/core.c:161 nfc_rfkill_set_block+0x2d/0x100 net/nfc/core.c:179 rfkill_set_block+0x1d2/0x440 net/rfkill/core.c:346 rfkill_fop_write+0x461/0x5a0 net/rfkill/core.c:1301 vfs_write+0x29a/0xb90 fs/read_write.c:684 ksys_write+0x150/0x270 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xe2/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fa59b39acb9 Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 e8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007fa5995f6028 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 00007fa59b615fa0 RCX: 00007fa59b39acb9 RDX: 0000000000000008 RSI: 0000200000000080 RDI: 0000000000000007 RBP: 00007fa59b408bf7 R08: ---truncated---
CVE-2026-23166 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ice: Fix NULL pointer dereference in ice_vsi_set_napi_queues Add NULL pointer checks in ice_vsi_set_napi_queues() to prevent crashes during resume from suspend when rings[q_idx]->q_vector is NULL. Tested adaptor: 60:00.0 Ethernet controller [0200]: Intel Corporation Ethernet Controller E810-XXV for SFP [8086:159b] (rev 02) Subsystem: Intel Corporation Ethernet Network Adapter E810-XXV-2 [8086:4003] SR-IOV state: both disabled and enabled can reproduce this issue. kernel version: v6.18 Reproduce steps: Boot up and execute suspend like systemctl suspend or rtcwake. Log: <1>[ 231.443607] BUG: kernel NULL pointer dereference, address: 0000000000000040 <1>[ 231.444052] #PF: supervisor read access in kernel mode <1>[ 231.444484] #PF: error_code(0x0000) - not-present page <6>[ 231.444913] PGD 0 P4D 0 <4>[ 231.445342] Oops: Oops: 0000 [#1] SMP NOPTI <4>[ 231.446635] RIP: 0010:netif_queue_set_napi+0xa/0x170 <4>[ 231.447067] Code: 31 f6 31 ff c3 cc cc cc cc 0f 1f 80 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 00 00 48 85 c9 74 0b <48> 83 79 30 00 0f 84 39 01 00 00 55 41 89 d1 49 89 f8 89 f2 48 89 <4>[ 231.447513] RSP: 0018:ffffcc780fc078c0 EFLAGS: 00010202 <4>[ 231.447961] RAX: ffff8b848ca30400 RBX: ffff8b848caf2028 RCX: 0000000000000010 <4>[ 231.448443] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff8b848dbd4000 <4>[ 231.448896] RBP: ffffcc780fc078e8 R08: 0000000000000000 R09: 0000000000000000 <4>[ 231.449345] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001 <4>[ 231.449817] R13: ffff8b848dbd4000 R14: ffff8b84833390c8 R15: 0000000000000000 <4>[ 231.450265] FS: 00007c7b29e9d740(0000) GS:ffff8b8c068e2000(0000) knlGS:0000000000000000 <4>[ 231.450715] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 <4>[ 231.451179] CR2: 0000000000000040 CR3: 000000030626f004 CR4: 0000000000f72ef0 <4>[ 231.451629] PKRU: 55555554 <4>[ 231.452076] Call Trace: <4>[ 231.452549] <TASK> <4>[ 231.452996] ? ice_vsi_set_napi_queues+0x4d/0x110 [ice] <4>[ 231.453482] ice_resume+0xfd/0x220 [ice] <4>[ 231.453977] ? __pfx_pci_pm_resume+0x10/0x10 <4>[ 231.454425] pci_pm_resume+0x8c/0x140 <4>[ 231.454872] ? __pfx_pci_pm_resume+0x10/0x10 <4>[ 231.455347] dpm_run_callback+0x5f/0x160 <4>[ 231.455796] ? dpm_wait_for_superior+0x107/0x170 <4>[ 231.456244] device_resume+0x177/0x270 <4>[ 231.456708] dpm_resume+0x209/0x2f0 <4>[ 231.457151] dpm_resume_end+0x15/0x30 <4>[ 231.457596] suspend_devices_and_enter+0x1da/0x2b0 <4>[ 231.458054] enter_state+0x10e/0x570 Add defensive checks for both the ring pointer and its q_vector before dereferencing, allowing the system to resume successfully even when q_vectors are unmapped.
CVE-2026-23165 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: sfc: fix deadlock in RSS config read Since cited commit, core locks the net_device's rss_lock when handling ethtool -x command, so driver's implementation should not lock it again. Remove the latter.
CVE-2026-23164 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: rocker: fix memory leak in rocker_world_port_post_fini() In rocker_world_port_pre_init(), rocker_port->wpriv is allocated with kzalloc(wops->port_priv_size, GFP_KERNEL). However, in rocker_world_port_post_fini(), the memory is only freed when wops->port_post_fini callback is set: if (!wops->port_post_fini) return; wops->port_post_fini(rocker_port); kfree(rocker_port->wpriv); Since rocker_ofdpa_ops does not implement port_post_fini callback (it is NULL), the wpriv memory allocated for each port is never freed when ports are removed. This leads to a memory leak of sizeof(struct ofdpa_port) bytes per port on every device removal. Fix this by always calling kfree(rocker_port->wpriv) regardless of whether the port_post_fini callback exists.
CVE-2026-23163 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix NULL pointer dereference in amdgpu_gmc_filter_faults_remove On APUs such as Raven and Renoir (GC 9.1.0, 9.2.2, 9.3.0), the ih1 and ih2 interrupt ring buffers are not initialized. This is by design, as these secondary IH rings are only available on discrete GPUs. See vega10_ih_sw_init() which explicitly skips ih1/ih2 initialization when AMD_IS_APU is set. However, amdgpu_gmc_filter_faults_remove() unconditionally uses ih1 to get the timestamp of the last interrupt entry. When retry faults are enabled on APUs (noretry=0), this function is called from the SVM page fault recovery path, resulting in a NULL pointer dereference when amdgpu_ih_decode_iv_ts_helper() attempts to access ih->ring[]. The crash manifests as: BUG: kernel NULL pointer dereference, address: 0000000000000004 RIP: 0010:amdgpu_ih_decode_iv_ts_helper+0x22/0x40 [amdgpu] Call Trace: amdgpu_gmc_filter_faults_remove+0x60/0x130 [amdgpu] svm_range_restore_pages+0xae5/0x11c0 [amdgpu] amdgpu_vm_handle_fault+0xc8/0x340 [amdgpu] gmc_v9_0_process_interrupt+0x191/0x220 [amdgpu] amdgpu_irq_dispatch+0xed/0x2c0 [amdgpu] amdgpu_ih_process+0x84/0x100 [amdgpu] This issue was exposed by commit 1446226d32a4 ("drm/amdgpu: Remove GC HW IP 9.3.0 from noretry=1") which changed the default for Renoir APU from noretry=1 to noretry=0, enabling retry fault handling and thus exercising the buggy code path. Fix this by adding a check for ih1.ring_size before attempting to use it. Also restore the soft_ih support from commit dd299441654f ("drm/amdgpu: Rework retry fault removal"). This is needed if the hardware doesn't support secondary HW IH rings. v2: additional updates (Alex) (cherry picked from commit 6ce8d536c80aa1f059e82184f0d1994436b1d526)
CVE-2026-23162 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/xe/nvm: Fix double-free on aux add failure After a successful auxiliary_device_init(), aux_dev->dev.release (xe_nvm_release_dev()) is responsible for the kfree(nvm). When there is failure with auxiliary_device_add(), driver will call auxiliary_device_uninit(), which call put_device(). So that the .release callback will be triggered to free the memory associated with the auxiliary_device. Move the kfree(nvm) into the auxiliary_device_init() failure path and remove the err goto path to fix below error. " [ 13.232905] ================================================================== [ 13.232911] BUG: KASAN: double-free in xe_nvm_init+0x751/0xf10 [xe] [ 13.233112] Free of addr ffff888120635000 by task systemd-udevd/273 [ 13.233120] CPU: 8 UID: 0 PID: 273 Comm: systemd-udevd Not tainted 6.19.0-rc2-lgci-xe-kernel+ #225 PREEMPT(voluntary) ... [ 13.233125] Call Trace: [ 13.233126] <TASK> [ 13.233127] dump_stack_lvl+0x7f/0xc0 [ 13.233132] print_report+0xce/0x610 [ 13.233136] ? kasan_complete_mode_report_info+0x5d/0x1e0 [ 13.233139] ? xe_nvm_init+0x751/0xf10 [xe] ... " v2: drop err goto path. (Alexander) (cherry picked from commit a3187c0c2bbd947ffff97f90d077ac88f9c2a215)
CVE-2026-23161 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: mm/shmem, swap: fix race of truncate and swap entry split The helper for shmem swap freeing is not handling the order of swap entries correctly. It uses xa_cmpxchg_irq to erase the swap entry, but it gets the entry order before that using xa_get_order without lock protection, and it may get an outdated order value if the entry is split or changed in other ways after the xa_get_order and before the xa_cmpxchg_irq. And besides, the order could grow and be larger than expected, and cause truncation to erase data beyond the end border. For example, if the target entry and following entries are swapped in or freed, then a large folio was added in place and swapped out, using the same entry, the xa_cmpxchg_irq will still succeed, it's very unlikely to happen though. To fix that, open code the Xarray cmpxchg and put the order retrieval and value checking in the same critical section. Also, ensure the order won't exceed the end border, skip it if the entry goes across the border. Skipping large swap entries crosses the end border is safe here. Shmem truncate iterates the range twice, in the first iteration, find_lock_entries already filtered such entries, and shmem will swapin the entries that cross the end border and partially truncate the folio (split the folio or at least zero part of it). So in the second loop here, if we see a swap entry that crosses the end order, it must at least have its content erased already. I observed random swapoff hangs and kernel panics when stress testing ZSWAP with shmem. After applying this patch, all problems are gone.
CVE-2026-23160 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: octeon_ep: Fix memory leak in octep_device_setup() In octep_device_setup(), if octep_ctrl_net_init() fails, the function returns directly without unmapping the mapped resources and freeing the allocated configuration memory. Fix this by jumping to the unsupported_dev label, which performs the necessary cleanup. This aligns with the error handling logic of other paths in this function. Compile tested only. Issue found using a prototype static analysis tool and code review.
CVE-2026-23159 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: perf: sched: Fix perf crash with new is_user_task() helper In order to do a user space stacktrace the current task needs to be a user task that has executed in user space. It use to be possible to test if a task is a user task or not by simply checking the task_struct mm field. If it was non NULL, it was a user task and if not it was a kernel task. But things have changed over time, and some kernel tasks now have their own mm field. An idea was made to instead test PF_KTHREAD and two functions were used to wrap this check in case it became more complex to test if a task was a user task or not[1]. But this was rejected and the C code simply checked the PF_KTHREAD directly. It was later found that not all kernel threads set PF_KTHREAD. The io-uring helpers instead set PF_USER_WORKER and this needed to be added as well. But checking the flags is still not enough. There's a very small window when a task exits that it frees its mm field and it is set back to NULL. If perf were to trigger at this moment, the flags test would say its a user space task but when perf would read the mm field it would crash with at NULL pointer dereference. Now there are flags that can be used to test if a task is exiting, but they are set in areas that perf may still want to profile the user space task (to see where it exited). The only real test is to check both the flags and the mm field. Instead of making this modification in every location, create a new is_user_task() helper function that does all the tests needed to know if it is safe to read the user space memory or not. [1] https://lore.kernel.org/all/20250425204120.639530125@goodmis.org/