Search

Search Results (328357 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68774 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hfsplus: fix missing hfs_bnode_get() in __hfs_bnode_create When sync() and link() are called concurrently, both threads may enter hfs_bnode_find() without finding the node in the hash table and proceed to create it. Thread A: hfsplus_write_inode() -> hfsplus_write_system_inode() -> hfs_btree_write() -> hfs_bnode_find(tree, 0) -> __hfs_bnode_create(tree, 0) Thread B: hfsplus_create_cat() -> hfs_brec_insert() -> hfs_bnode_split() -> hfs_bmap_alloc() -> hfs_bnode_find(tree, 0) -> __hfs_bnode_create(tree, 0) In this case, thread A creates the bnode, sets refcnt=1, and hashes it. Thread B also tries to create the same bnode, notices it has already been inserted, drops its own instance, and uses the hashed one without getting the node. ``` node2 = hfs_bnode_findhash(tree, cnid); if (!node2) { <- Thread A hash = hfs_bnode_hash(cnid); node->next_hash = tree->node_hash[hash]; tree->node_hash[hash] = node; tree->node_hash_cnt++; } else { <- Thread B spin_unlock(&tree->hash_lock); kfree(node); wait_event(node2->lock_wq, !test_bit(HFS_BNODE_NEW, &node2->flags)); return node2; } ``` However, hfs_bnode_find() requires each call to take a reference. Here both threads end up setting refcnt=1. When they later put the node, this triggers: BUG_ON(!atomic_read(&node->refcnt)) In this scenario, Thread B in fact finds the node in the hash table rather than creating a new one, and thus must take a reference. Fix this by calling hfs_bnode_get() when reusing a bnode newly created by another thread to ensure the refcount is updated correctly. A similar bug was fixed in HFS long ago in commit a9dc087fd3c4 ("fix missing hfs_bnode_get() in __hfs_bnode_create") but the same issue remained in HFS+ until now.
CVE-2025-68773 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: spi: fsl-cpm: Check length parity before switching to 16 bit mode Commit fc96ec826bce ("spi: fsl-cpm: Use 16 bit mode for large transfers with even size") failed to make sure that the size is really even before switching to 16 bit mode. Until recently the problem went unnoticed because kernfs uses a pre-allocated bounce buffer of size PAGE_SIZE for reading EEPROM. But commit 8ad6249c51d0 ("eeprom: at25: convert to spi-mem API") introduced an additional dynamically allocated bounce buffer whose size is exactly the size of the transfer, leading to a buffer overrun in the fsl-cpm driver when that size is odd. Add the missing length parity verification and remain in 8 bit mode when the length is not even.
CVE-2025-68771 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix kernel BUG in ocfs2_find_victim_chain syzbot reported a kernel BUG in ocfs2_find_victim_chain() because the `cl_next_free_rec` field of the allocation chain list (next free slot in the chain list) is 0, triggring the BUG_ON(!cl->cl_next_free_rec) condition in ocfs2_find_victim_chain() and panicking the kernel. To fix this, an if condition is introduced in ocfs2_claim_suballoc_bits(), just before calling ocfs2_find_victim_chain(), the code block in it being executed when either of the following conditions is true: 1. `cl_next_free_rec` is equal to 0, indicating that there are no free chains in the allocation chain list 2. `cl_next_free_rec` is greater than `cl_count` (the total number of chains in the allocation chain list) Either of them being true is indicative of the fact that there are no chains left for usage. This is addressed using ocfs2_error(), which prints the error log for debugging purposes, rather than panicking the kernel.
CVE-2025-68769 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix return value of f2fs_recover_fsync_data() With below scripts, it will trigger panic in f2fs: mkfs.f2fs -f /dev/vdd mount /dev/vdd /mnt/f2fs touch /mnt/f2fs/foo sync echo 111 >> /mnt/f2fs/foo f2fs_io fsync /mnt/f2fs/foo f2fs_io shutdown 2 /mnt/f2fs umount /mnt/f2fs mount -o ro,norecovery /dev/vdd /mnt/f2fs or mount -o ro,disable_roll_forward /dev/vdd /mnt/f2fs F2FS-fs (vdd): f2fs_recover_fsync_data: recovery fsync data, check_only: 0 F2FS-fs (vdd): Mounted with checkpoint version = 7f5c361f F2FS-fs (vdd): Stopped filesystem due to reason: 0 F2FS-fs (vdd): f2fs_recover_fsync_data: recovery fsync data, check_only: 1 Filesystem f2fs get_tree() didn't set fc->root, returned 1 ------------[ cut here ]------------ kernel BUG at fs/super.c:1761! Oops: invalid opcode: 0000 [#1] SMP PTI CPU: 3 UID: 0 PID: 722 Comm: mount Not tainted 6.18.0-rc2+ #721 PREEMPT(voluntary) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 RIP: 0010:vfs_get_tree.cold+0x18/0x1a Call Trace: <TASK> fc_mount+0x13/0xa0 path_mount+0x34e/0xc50 __x64_sys_mount+0x121/0x150 do_syscall_64+0x84/0x800 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7fa6cc126cfe The root cause is we missed to handle error number returned from f2fs_recover_fsync_data() when mounting image w/ ro,norecovery or ro,disable_roll_forward mount option, result in returning a positive error number to vfs_get_tree(), fix it.
CVE-2025-68767 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: hfsplus: Verify inode mode when loading from disk syzbot is reporting that S_IFMT bits of inode->i_mode can become bogus when the S_IFMT bits of the 16bits "mode" field loaded from disk are corrupted. According to [1], the permissions field was treated as reserved in Mac OS 8 and 9. According to [2], the reserved field was explicitly initialized with 0, and that field must remain 0 as long as reserved. Therefore, when the "mode" field is not 0 (i.e. no longer reserved), the file must be S_IFDIR if dir == 1, and the file must be one of S_IFREG/S_IFLNK/S_IFCHR/ S_IFBLK/S_IFIFO/S_IFSOCK if dir == 0.
CVE-2025-68765 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: mt76: mt7615: Fix memory leak in mt7615_mcu_wtbl_sta_add() In mt7615_mcu_wtbl_sta_add(), an skb sskb is allocated. If the subsequent call to mt76_connac_mcu_alloc_wtbl_req() fails, the function returns an error without freeing sskb, leading to a memory leak. Fix this by calling dev_kfree_skb() on sskb in the error handling path to ensure it is properly released.
CVE-2025-68764 1 Linux 1 Linux Kernel 2026-01-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: NFS: Automounted filesystems should inherit ro,noexec,nodev,sync flags When a filesystem is being automounted, it needs to preserve the user-set superblock mount options, such as the "ro" flag.
CVE-2025-68759 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: rtl818x: Fix potential memory leaks in rtl8180_init_rx_ring() In rtl8180_init_rx_ring(), memory is allocated for skb packets and DMA allocations in a loop. When an allocation fails, the previously successful allocations are not freed on exit. Fix that by jumping to err_free_rings label on error, which calls rtl8180_free_rx_ring() to free the allocations. Remove the free of rx_ring in rtl8180_init_rx_ring() error path, and set the freed priv->rx_buf entry to null, to avoid double free.
CVE-2025-68758 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: backlight: led-bl: Add devlink to supplier LEDs LED Backlight is a consumer of one or multiple LED class devices, but devlink is currently unable to create correct supplier-producer links when the supplier is a class device. It creates instead a link where the supplier is the parent of the expected device. One consequence is that removal order is not correctly enforced. Issues happen for example with the following sections in a device tree overlay: // An LED driver chip pca9632@62 { compatible = "nxp,pca9632"; reg = <0x62>; // ... addon_led_pwm: led-pwm@3 { reg = <3>; label = "addon:led:pwm"; }; }; backlight-addon { compatible = "led-backlight"; leds = <&addon_led_pwm>; brightness-levels = <255>; default-brightness-level = <255>; }; In this example, the devlink should be created between the backlight-addon (consumer) and the pca9632@62 (supplier). Instead it is created between the backlight-addon (consumer) and the parent of the pca9632@62, which is typically the I2C bus adapter. On removal of the above overlay, the LED driver can be removed before the backlight device, resulting in: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010 ... Call trace: led_put+0xe0/0x140 devm_led_release+0x6c/0x98 Another way to reproduce the bug without any device tree overlays is unbinding the LED class device (pca9632@62) before unbinding the consumer (backlight-addon): echo 11-0062 >/sys/bus/i2c/drivers/leds-pca963x/unbind echo ...backlight-dock >/sys/bus/platform/drivers/led-backlight/unbind Fix by adding a devlink between the consuming led-backlight device and the supplying LED device, as other drivers and subsystems do as well.
CVE-2025-68757 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/vgem-fence: Fix potential deadlock on release A timer that expires a vgem fence automatically in 10 seconds is now released with timer_delete_sync() from fence->ops.release() called on last dma_fence_put(). In some scenarios, it can run in IRQ context, which is not safe unless TIMER_IRQSAFE is used. One potentially risky scenario was demonstrated in Intel DRM CI trybot, BAT run on machine bat-adlp-6, while working on new IGT subtests syncobj_timeline@stress-* as user space replacements of some problematic test cases of a dma-fence-chain selftest [1]. [117.004338] ================================ [117.004340] WARNING: inconsistent lock state [117.004342] 6.17.0-rc7-CI_DRM_17270-g7644974e648c+ #1 Tainted: G S U [117.004346] -------------------------------- [117.004347] inconsistent {HARDIRQ-ON-W} -> {IN-HARDIRQ-W} usage. [117.004349] swapper/0/0 [HC1[1]:SC1[1]:HE0:SE0] takes: [117.004352] ffff888138f86aa8 ((&fence->timer)){?.-.}-{0:0}, at: __timer_delete_sync+0x4b/0x190 [117.004361] {HARDIRQ-ON-W} state was registered at: [117.004363] lock_acquire+0xc4/0x2e0 [117.004366] call_timer_fn+0x80/0x2a0 [117.004368] __run_timers+0x231/0x310 [117.004370] run_timer_softirq+0x76/0xe0 [117.004372] handle_softirqs+0xd4/0x4d0 [117.004375] __irq_exit_rcu+0x13f/0x160 [117.004377] irq_exit_rcu+0xe/0x20 [117.004379] sysvec_apic_timer_interrupt+0xa0/0xc0 [117.004382] asm_sysvec_apic_timer_interrupt+0x1b/0x20 [117.004385] cpuidle_enter_state+0x12b/0x8a0 [117.004388] cpuidle_enter+0x2e/0x50 [117.004393] call_cpuidle+0x22/0x60 [117.004395] do_idle+0x1fd/0x260 [117.004398] cpu_startup_entry+0x29/0x30 [117.004401] start_secondary+0x12d/0x160 [117.004404] common_startup_64+0x13e/0x141 [117.004407] irq event stamp: 2282669 [117.004409] hardirqs last enabled at (2282668): [<ffffffff8289db71>] _raw_spin_unlock_irqrestore+0x51/0x80 [117.004414] hardirqs last disabled at (2282669): [<ffffffff82882021>] sysvec_irq_work+0x11/0xc0 [117.004419] softirqs last enabled at (2254702): [<ffffffff8289fd00>] __do_softirq+0x10/0x18 [117.004423] softirqs last disabled at (2254725): [<ffffffff813d4ddf>] __irq_exit_rcu+0x13f/0x160 [117.004426] other info that might help us debug this: [117.004429] Possible unsafe locking scenario: [117.004432] CPU0 [117.004433] ---- [117.004434] lock((&fence->timer)); [117.004436] <Interrupt> [117.004438] lock((&fence->timer)); [117.004440] *** DEADLOCK *** [117.004443] 1 lock held by swapper/0/0: [117.004445] #0: ffffc90000003d50 ((&fence->timer)){?.-.}-{0:0}, at: call_timer_fn+0x7a/0x2a0 [117.004450] stack backtrace: [117.004453] CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Tainted: G S U 6.17.0-rc7-CI_DRM_17270-g7644974e648c+ #1 PREEMPT(voluntary) [117.004455] Tainted: [S]=CPU_OUT_OF_SPEC, [U]=USER [117.004455] Hardware name: Intel Corporation Alder Lake Client Platform/AlderLake-P DDR4 RVP, BIOS RPLPFWI1.R00.4035.A00.2301200723 01/20/2023 [117.004456] Call Trace: [117.004456] <IRQ> [117.004457] dump_stack_lvl+0x91/0xf0 [117.004460] dump_stack+0x10/0x20 [117.004461] print_usage_bug.part.0+0x260/0x360 [117.004463] mark_lock+0x76e/0x9c0 [117.004465] ? register_lock_class+0x48/0x4a0 [117.004467] __lock_acquire+0xbc3/0x2860 [117.004469] lock_acquire+0xc4/0x2e0 [117.004470] ? __timer_delete_sync+0x4b/0x190 [117.004472] ? __timer_delete_sync+0x4b/0x190 [117.004473] __timer_delete_sync+0x68/0x190 [117.004474] ? __timer_delete_sync+0x4b/0x190 [117.004475] timer_delete_sync+0x10/0x20 [117.004476] vgem_fence_release+0x19/0x30 [vgem] [117.004478] dma_fence_release+0xc1/0x3b0 [117.004480] ? dma_fence_release+0xa1/0x3b0 [117.004481] dma_fence_chain_release+0xe7/0x130 [117.004483] dma_fence_release+0xc1/0x3b0 [117.004484] ? _raw_spin_unlock_irqrestore+0x27/0x80 [117.004485] dma_fence_chain_irq_work+0x59/0x80 [117.004487] irq_work_single+0x75/0xa0 [117.004490] irq_work_r ---truncated---
CVE-2025-68746 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: spi: tegra210-quad: Fix timeout handling When the CPU that the QSPI interrupt handler runs on (typically CPU 0) is excessively busy, it can lead to rare cases of the IRQ thread not running before the transfer timeout is reached. While handling the timeouts, any pending transfers are cleaned up and the message that they correspond to is marked as failed, which leaves the curr_xfer field pointing at stale memory. To avoid this, clear curr_xfer to NULL upon timeout and check for this condition when the IRQ thread is finally run. While at it, also make sure to clear interrupts on failure so that new interrupts can be run. A better, more involved, fix would move the interrupt clearing into a hard IRQ handler. Ideally we would also want to signal that the IRQ thread no longer needs to be run after the timeout is hit to avoid the extra check for a valid transfer.
CVE-2025-68740 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ima: Handle error code returned by ima_filter_rule_match() In ima_match_rules(), if ima_filter_rule_match() returns -ENOENT due to the rule being NULL, the function incorrectly skips the 'if (!rc)' check and sets 'result = true'. The LSM rule is considered a match, causing extra files to be measured by IMA. This issue can be reproduced in the following scenario: After unloading the SELinux policy module via 'semodule -d', if an IMA measurement is triggered before ima_lsm_rules is updated, in ima_match_rules(), the first call to ima_filter_rule_match() returns -ESTALE. This causes the code to enter the 'if (rc == -ESTALE && !rule_reinitialized)' block, perform ima_lsm_copy_rule() and retry. In ima_lsm_copy_rule(), since the SELinux module has been removed, the rule becomes NULL, and the second call to ima_filter_rule_match() returns -ENOENT. This bypasses the 'if (!rc)' check and results in a false match. Call trace: selinux_audit_rule_match+0x310/0x3b8 security_audit_rule_match+0x60/0xa0 ima_match_rules+0x2e4/0x4a0 ima_match_policy+0x9c/0x1e8 ima_get_action+0x48/0x60 process_measurement+0xf8/0xa98 ima_bprm_check+0x98/0xd8 security_bprm_check+0x5c/0x78 search_binary_handler+0x6c/0x318 exec_binprm+0x58/0x1b8 bprm_execve+0xb8/0x130 do_execveat_common.isra.0+0x1a8/0x258 __arm64_sys_execve+0x48/0x68 invoke_syscall+0x50/0x128 el0_svc_common.constprop.0+0xc8/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x44/0x200 el0t_64_sync_handler+0x100/0x130 el0t_64_sync+0x3c8/0x3d0 Fix this by changing 'if (!rc)' to 'if (rc <= 0)' to ensure that error codes like -ENOENT do not bypass the check and accidentally result in a successful match.
CVE-2025-68733 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: smack: fix bug: unprivileged task can create labels If an unprivileged task is allowed to relabel itself (/smack/relabel-self is not empty), it can freely create new labels by writing their names into own /proc/PID/attr/smack/current This occurs because do_setattr() imports the provided label in advance, before checking "relabel-self" list. This change ensures that the "relabel-self" list is checked before importing the label.
CVE-2025-68732 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gpu: host1x: Fix race in syncpt alloc/free Fix race condition between host1x_syncpt_alloc() and host1x_syncpt_put() by using kref_put_mutex() instead of kref_put() + manual mutex locking. This ensures no thread can acquire the syncpt_mutex after the refcount drops to zero but before syncpt_release acquires it. This prevents races where syncpoints could be allocated while still being cleaned up from a previous release. Remove explicit mutex locking in syncpt_release as kref_put_mutex() handles this atomically.
CVE-2025-68728 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: ntfs3: fix uninit memory after failed mi_read in mi_format_new Fix a KMSAN un-init bug found by syzkaller. ntfs_get_bh() expects a buffer from sb_getblk(), that buffer may not be uptodate. We do not bring the buffer uptodate before setting it as uptodate. If the buffer were to not be uptodate, it could mean adding a buffer with un-init data to the mi record. Attempting to load that record will trigger KMSAN. Avoid this by setting the buffer as uptodate, if it’s not already, by overwriting it.
CVE-2025-68727 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: ntfs3: Fix uninit buffer allocated by __getname() Fix uninit errors caused after buffer allocation given to 'de'; by initializing the buffer with zeroes. The fix was found by using KMSAN.
CVE-2025-68724 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: asymmetric_keys - prevent overflow in asymmetric_key_generate_id Use check_add_overflow() to guard against potential integer overflows when adding the binary blob lengths and the size of an asymmetric_key_id structure and return ERR_PTR(-EOVERFLOW) accordingly. This prevents a possible buffer overflow when copying data from potentially malicious X.509 certificate fields that can be arbitrarily large, such as ASN.1 INTEGER serial numbers, issuer names, etc.
CVE-2025-68372 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nbd: defer config put in recv_work There is one uaf issue in recv_work when running NBD_CLEAR_SOCK and NBD_CMD_RECONFIGURE: nbd_genl_connect // conf_ref=2 (connect and recv_work A) nbd_open // conf_ref=3 recv_work A done // conf_ref=2 NBD_CLEAR_SOCK // conf_ref=1 nbd_genl_reconfigure // conf_ref=2 (trigger recv_work B) close nbd // conf_ref=1 recv_work B config_put // conf_ref=0 atomic_dec(&config->recv_threads); -> UAF Or only running NBD_CLEAR_SOCK: nbd_genl_connect // conf_ref=2 nbd_open // conf_ref=3 NBD_CLEAR_SOCK // conf_ref=2 close nbd nbd_release config_put // conf_ref=1 recv_work config_put // conf_ref=0 atomic_dec(&config->recv_threads); -> UAF Commit 87aac3a80af5 ("nbd: call nbd_config_put() before notifying the waiter") moved nbd_config_put() to run before waking up the waiter in recv_work, in order to ensure that nbd_start_device_ioctl() would not be woken up while nbd->task_recv was still uncleared. However, in nbd_start_device_ioctl(), after being woken up it explicitly calls flush_workqueue() to make sure all current works are finished. Therefore, there is no need to move the config put ahead of the wakeup. Move nbd_config_put() to the end of recv_work, so that the reference is held for the whole lifetime of the worker thread. This makes sure the config cannot be freed while recv_work is still running, even if clear + reconfigure interleave. In addition, we don't need to worry about recv_work dropping the last nbd_put (which causes deadlock): path A (netlink with NBD_CFLAG_DESTROY_ON_DISCONNECT): connect // nbd_refs=1 (trigger recv_work) open nbd // nbd_refs=2 NBD_CLEAR_SOCK close nbd nbd_release nbd_disconnect_and_put flush_workqueue // recv_work done nbd_config_put nbd_put // nbd_refs=1 nbd_put // nbd_refs=0 queue_work path B (netlink without NBD_CFLAG_DESTROY_ON_DISCONNECT): connect // nbd_refs=2 (trigger recv_work) open nbd // nbd_refs=3 NBD_CLEAR_SOCK // conf_refs=2 close nbd nbd_release nbd_config_put // conf_refs=1 nbd_put // nbd_refs=2 recv_work done // conf_refs=0, nbd_refs=1 rmmod // nbd_refs=0 Depends-on: e2daec488c57 ("nbd: Fix hungtask when nbd_config_put")
CVE-2025-68369 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: ntfs3: init run lock for extend inode After setting the inode mode of $Extend to a regular file, executing the truncate system call will enter the do_truncate() routine, causing the run_lock uninitialized error reported by syzbot. Prior to patch 4e8011ffec79, if the inode mode of $Extend was not set to a regular file, the do_truncate() routine would not be entered. Add the run_lock initialization when loading $Extend. syzbot reported: INFO: trying to register non-static key. Call Trace: dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 assign_lock_key+0x133/0x150 kernel/locking/lockdep.c:984 register_lock_class+0x105/0x320 kernel/locking/lockdep.c:1299 __lock_acquire+0x99/0xd20 kernel/locking/lockdep.c:5112 lock_acquire+0x120/0x360 kernel/locking/lockdep.c:5868 down_write+0x96/0x1f0 kernel/locking/rwsem.c:1590 ntfs_set_size+0x140/0x200 fs/ntfs3/inode.c:860 ntfs_extend+0x1d9/0x970 fs/ntfs3/file.c:387 ntfs_setattr+0x2e8/0xbe0 fs/ntfs3/file.c:808
CVE-2025-68367 1 Linux 1 Linux Kernel 2026-01-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: macintosh/mac_hid: fix race condition in mac_hid_toggle_emumouse The following warning appears when running syzkaller, and this issue also exists in the mainline code. ------------[ cut here ]------------ list_add double add: new=ffffffffa57eee28, prev=ffffffffa57eee28, next=ffffffffa5e63100. WARNING: CPU: 0 PID: 1491 at lib/list_debug.c:35 __list_add_valid_or_report+0xf7/0x130 Modules linked in: CPU: 0 PID: 1491 Comm: syz.1.28 Not tainted 6.6.0+ #3 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:__list_add_valid_or_report+0xf7/0x130 RSP: 0018:ff1100010dfb7b78 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffffffffa57eee18 RCX: ffffffff97fc9817 RDX: 0000000000040000 RSI: ffa0000002383000 RDI: 0000000000000001 RBP: ffffffffa57eee28 R08: 0000000000000001 R09: ffe21c0021bf6f2c R10: 0000000000000001 R11: 6464615f7473696c R12: ffffffffa5e63100 R13: ffffffffa57eee28 R14: ffffffffa57eee28 R15: ff1100010dfb7d48 FS: 00007fb14398b640(0000) GS:ff11000119600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000010d096005 CR4: 0000000000773ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 80000000 Call Trace: <TASK> input_register_handler+0xb3/0x210 mac_hid_start_emulation+0x1c5/0x290 mac_hid_toggle_emumouse+0x20a/0x240 proc_sys_call_handler+0x4c2/0x6e0 new_sync_write+0x1b1/0x2d0 vfs_write+0x709/0x950 ksys_write+0x12a/0x250 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x78/0xe2 The WARNING occurs when two processes concurrently write to the mac-hid emulation sysctl, causing a race condition in mac_hid_toggle_emumouse(). Both processes read old_val=0, then both try to register the input handler, leading to a double list_add of the same handler. CPU0 CPU1 ------------------------- ------------------------- vfs_write() //write 1 vfs_write() //write 1 proc_sys_write() proc_sys_write() mac_hid_toggle_emumouse() mac_hid_toggle_emumouse() old_val = *valp // old_val=0 old_val = *valp // old_val=0 mutex_lock_killable() proc_dointvec() // *valp=1 mac_hid_start_emulation() input_register_handler() mutex_unlock() mutex_lock_killable() proc_dointvec() mac_hid_start_emulation() input_register_handler() //Trigger Warning mutex_unlock() Fix this by moving the old_val read inside the mutex lock region.