| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
tipc: fix UAF in error path
Sam Page (sam4k) working with Trend Micro Zero Day Initiative reported
a UAF in the tipc_buf_append() error path:
BUG: KASAN: slab-use-after-free in kfree_skb_list_reason+0x47e/0x4c0
linux/net/core/skbuff.c:1183
Read of size 8 at addr ffff88804d2a7c80 by task poc/8034
CPU: 1 PID: 8034 Comm: poc Not tainted 6.8.2 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.16.0-debian-1.16.0-5 04/01/2014
Call Trace:
<IRQ>
__dump_stack linux/lib/dump_stack.c:88
dump_stack_lvl+0xd9/0x1b0 linux/lib/dump_stack.c:106
print_address_description linux/mm/kasan/report.c:377
print_report+0xc4/0x620 linux/mm/kasan/report.c:488
kasan_report+0xda/0x110 linux/mm/kasan/report.c:601
kfree_skb_list_reason+0x47e/0x4c0 linux/net/core/skbuff.c:1183
skb_release_data+0x5af/0x880 linux/net/core/skbuff.c:1026
skb_release_all linux/net/core/skbuff.c:1094
__kfree_skb linux/net/core/skbuff.c:1108
kfree_skb_reason+0x12d/0x210 linux/net/core/skbuff.c:1144
kfree_skb linux/./include/linux/skbuff.h:1244
tipc_buf_append+0x425/0xb50 linux/net/tipc/msg.c:186
tipc_link_input+0x224/0x7c0 linux/net/tipc/link.c:1324
tipc_link_rcv+0x76e/0x2d70 linux/net/tipc/link.c:1824
tipc_rcv+0x45f/0x10f0 linux/net/tipc/node.c:2159
tipc_udp_recv+0x73b/0x8f0 linux/net/tipc/udp_media.c:390
udp_queue_rcv_one_skb+0xad2/0x1850 linux/net/ipv4/udp.c:2108
udp_queue_rcv_skb+0x131/0xb00 linux/net/ipv4/udp.c:2186
udp_unicast_rcv_skb+0x165/0x3b0 linux/net/ipv4/udp.c:2346
__udp4_lib_rcv+0x2594/0x3400 linux/net/ipv4/udp.c:2422
ip_protocol_deliver_rcu+0x30c/0x4e0 linux/net/ipv4/ip_input.c:205
ip_local_deliver_finish+0x2e4/0x520 linux/net/ipv4/ip_input.c:233
NF_HOOK linux/./include/linux/netfilter.h:314
NF_HOOK linux/./include/linux/netfilter.h:308
ip_local_deliver+0x18e/0x1f0 linux/net/ipv4/ip_input.c:254
dst_input linux/./include/net/dst.h:461
ip_rcv_finish linux/net/ipv4/ip_input.c:449
NF_HOOK linux/./include/linux/netfilter.h:314
NF_HOOK linux/./include/linux/netfilter.h:308
ip_rcv+0x2c5/0x5d0 linux/net/ipv4/ip_input.c:569
__netif_receive_skb_one_core+0x199/0x1e0 linux/net/core/dev.c:5534
__netif_receive_skb+0x1f/0x1c0 linux/net/core/dev.c:5648
process_backlog+0x101/0x6b0 linux/net/core/dev.c:5976
__napi_poll.constprop.0+0xba/0x550 linux/net/core/dev.c:6576
napi_poll linux/net/core/dev.c:6645
net_rx_action+0x95a/0xe90 linux/net/core/dev.c:6781
__do_softirq+0x21f/0x8e7 linux/kernel/softirq.c:553
do_softirq linux/kernel/softirq.c:454
do_softirq+0xb2/0xf0 linux/kernel/softirq.c:441
</IRQ>
<TASK>
__local_bh_enable_ip+0x100/0x120 linux/kernel/softirq.c:381
local_bh_enable linux/./include/linux/bottom_half.h:33
rcu_read_unlock_bh linux/./include/linux/rcupdate.h:851
__dev_queue_xmit+0x871/0x3ee0 linux/net/core/dev.c:4378
dev_queue_xmit linux/./include/linux/netdevice.h:3169
neigh_hh_output linux/./include/net/neighbour.h:526
neigh_output linux/./include/net/neighbour.h:540
ip_finish_output2+0x169f/0x2550 linux/net/ipv4/ip_output.c:235
__ip_finish_output linux/net/ipv4/ip_output.c:313
__ip_finish_output+0x49e/0x950 linux/net/ipv4/ip_output.c:295
ip_finish_output+0x31/0x310 linux/net/ipv4/ip_output.c:323
NF_HOOK_COND linux/./include/linux/netfilter.h:303
ip_output+0x13b/0x2a0 linux/net/ipv4/ip_output.c:433
dst_output linux/./include/net/dst.h:451
ip_local_out linux/net/ipv4/ip_output.c:129
ip_send_skb+0x3e5/0x560 linux/net/ipv4/ip_output.c:1492
udp_send_skb+0x73f/0x1530 linux/net/ipv4/udp.c:963
udp_sendmsg+0x1a36/0x2b40 linux/net/ipv4/udp.c:1250
inet_sendmsg+0x105/0x140 linux/net/ipv4/af_inet.c:850
sock_sendmsg_nosec linux/net/socket.c:730
__sock_sendmsg linux/net/socket.c:745
__sys_sendto+0x42c/0x4e0 linux/net/socket.c:2191
__do_sys_sendto linux/net/socket.c:2203
__se_sys_sendto linux/net/socket.c:2199
__x64_sys_sendto+0xe0/0x1c0 linux/net/socket.c:2199
do_syscall_x64 linux/arch/x86/entry/common.c:52
do_syscall_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix out-of-bounds access in ops_init
net_alloc_generic is called by net_alloc, which is called without any
locking. It reads max_gen_ptrs, which is changed under pernet_ops_rwsem. It
is read twice, first to allocate an array, then to set s.len, which is
later used to limit the bounds of the array access.
It is possible that the array is allocated and another thread is
registering a new pernet ops, increments max_gen_ptrs, which is then used
to set s.len with a larger than allocated length for the variable array.
Fix it by reading max_gen_ptrs only once in net_alloc_generic. If
max_gen_ptrs is later incremented, it will be caught in net_assign_generic. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: sunxi-ng: h6: Reparent CPUX during PLL CPUX rate change
While PLL CPUX clock rate change when CPU is running from it works in
vast majority of cases, now and then it causes instability. This leads
to system crashes and other undefined behaviour. After a lot of testing
(30+ hours) while also doing a lot of frequency switches, we can't
observe any instability issues anymore when doing reparenting to stable
clock like 24 MHz oscillator. |
| YouPHPTube <= 7.8 contains a local file inclusion vulnerability that allows unauthenticated attackers to access arbitrary files by manipulating the 'lang' parameter in GET requests. Attackers can exploit the path traversal flaw in locale/function.php to include and view PHP files outside the intended directory by using directory traversal sequences. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: process: Fix kernel gp leakage
childregs represents the registers which are active for the new thread
in user context. For a kernel thread, childregs->gp is never used since
the kernel gp is not touched by switch_to. For a user mode helper, the
gp value can be observed in user space after execve or possibly by other
means.
[From the email thread]
The /* Kernel thread */ comment is somewhat inaccurate in that it is also used
for user_mode_helper threads, which exec a user process, e.g. /sbin/init or
when /proc/sys/kernel/core_pattern is a pipe. Such threads do not have
PF_KTHREAD set and are valid targets for ptrace etc. even before they exec.
childregs is the *user* context during syscall execution and it is observable
from userspace in at least five ways:
1. kernel_execve does not currently clear integer registers, so the starting
register state for PID 1 and other user processes started by the kernel has
sp = user stack, gp = kernel __global_pointer$, all other integer registers
zeroed by the memset in the patch comment.
This is a bug in its own right, but I'm unwilling to bet that it is the only
way to exploit the issue addressed by this patch.
2. ptrace(PTRACE_GETREGSET): you can PTRACE_ATTACH to a user_mode_helper thread
before it execs, but ptrace requires SIGSTOP to be delivered which can only
happen at user/kernel boundaries.
3. /proc/*/task/*/syscall: this is perfectly happy to read pt_regs for
user_mode_helpers before the exec completes, but gp is not one of the
registers it returns.
4. PERF_SAMPLE_REGS_USER: LOCKDOWN_PERF normally prevents access to kernel
addresses via PERF_SAMPLE_REGS_INTR, but due to this bug kernel addresses
are also exposed via PERF_SAMPLE_REGS_USER which is permitted under
LOCKDOWN_PERF. I have not attempted to write exploit code.
5. Much of the tracing infrastructure allows access to user registers. I have
not attempted to determine which forms of tracing allow access to user
registers without already allowing access to kernel registers. |
| VIAVIWEB Wallpaper Admin 1.0 contains a SQL injection vulnerability that allows attackers to bypass authentication by manipulating login credentials. Attackers can exploit the login page by injecting 'admin' or 1=1-- - payload to gain unauthorized access to the administrative interface. |
| Neo4j Enterprise edition versions prior to 2025.11.2 and 5.26.17 are vulnerable to a potential information disclosure by an attacker who has some legitimate access to the database. The vulnerability allows attacker without read access to a property to infer information about its value by trying to enumerate all possible values through observing error messages of SET property.
We recommend upgrading to 2025.11.2 or 5.26.17 and above, where the issues is fixed. |
| Dify v1.9.1 is vulnerable to Insecure Permissions. An unauthenticated attacker can directly send HTTP GET requests to the /console/api/system-features endpoint without any authentication credentials or session tokens. The endpoint fails to implement proper authorization checks, allowing anonymous access to sensitive system configuration data. NOTE: The maintainer states that the endpoint is unauthenticated by design and serves as a bootstrap mechanism required for the dashboard initialization. They also state that the description inaccurately classifies the returned data as sensitive system configuration, stating that the data is non-sensitive and required for client-side rendering. No PII, credentials, or secrets are exposed. |
| A flaw was found in libssh when using the ChaCha20 cipher with the OpenSSL library. If an attacker manages to exhaust the heap space, this error is not detected and may lead to libssh using a partially initialized cipher context. This occurs because the OpenSSL error code returned aliases with the SSH_OK code, resulting in libssh not properly detecting the error returned by the OpenSSL library. This issue can lead to undefined behavior, including compromised data confidentiality and integrity or crashes. |
| Systems running the Instaclustr
fork of Stratio's Cassandra-Lucene-Index plugin versions 4.0-rc1-1.0.0
through 4.0.16-1.0.0 and 4.1.2-1.0.0 through 4.1.8-1.0.0, installed into
Apache Cassandra version 4.x, are susceptible to a vulnerability which
when successfully exploited could allow authenticated Cassandra users to
remotely bypass RBAC and escalate their privileges. |
| Calling wordexp with WRDE_REUSE in conjunction with WRDE_APPEND in the GNU C Library version 2.0 to version 2.42 may cause the interface to return uninitialized memory in the we_wordv member, which on subsequent calls to wordfree may abort the process. |
| A flaw was found in QEMU. If the QIOChannelWebsock object is freed while it is waiting to complete a handshake, a GSource is leaked. This can lead to the callback firing later on and triggering a use-after-free in the use of the channel. This can be abused by a malicious client with network access to the VNC WebSocket port to cause a denial of service during the WebSocket handshake prior to the VNC client authentication. |
| Unrestricted Upload of File with Dangerous Type vulnerability in Webful Creations Computer Repair Shop allows Upload a Web Shell to a Web Server.This issue affects Computer Repair Shop: from n/a through 3.8115. |
| Unrestricted Upload of File with Dangerous Type vulnerability in Jordy Meow AI Engine: ChatGPT Chatbot.This issue affects AI Engine: ChatGPT Chatbot: from n/a through 1.9.98.
|
| VIAVIWEB Wallpaper Admin 1.0 contains an unauthenticated remote code execution vulnerability in the image upload functionality. Attackers can upload a malicious PHP file through the add_gallery_image.php endpoint to execute arbitrary code on the server. |
| VIAVIWEB Wallpaper Admin 1.0 contains an SQL injection vulnerability that allows authenticated attackers to manipulate database queries by injecting SQL code through the img_id parameter. Attackers can send GET requests to edit_gallery_image.php with malicious img_id values to extract database information. |
| 5ire is a cross-platform desktop artificial intelligence assistant and model context protocol client. Version 0.13.2 contains a vulnerability in the chat page's script gadgets that enables content injection attacks through multiple vectors: malicious prompt injection pages, compromised MCP servers, and exploited tool integrations. This is fixed in version 0.14.0. |
| Improper Input Validation (CWE-20) in Kibana's Email Connector can allow an attacker to cause an Excessive Allocation (CAPEC-130) through a specially crafted email address parameter. This requires an attacker to have authenticated access with view-level privileges sufficient to execute connector actions. The application attempts to process specially crafted email format, resulting in complete service unavailability for all users until manual restart is performed. |
| In the Linux kernel, the following vulnerability has been resolved:
phonet: fix rtm_phonet_notify() skb allocation
fill_route() stores three components in the skb:
- struct rtmsg
- RTA_DST (u8)
- RTA_OIF (u32)
Therefore, rtm_phonet_notify() should use
NLMSG_ALIGN(sizeof(struct rtmsg)) +
nla_total_size(1) +
nla_total_size(4) |
| In the Linux kernel, the following vulnerability has been resolved:
bna: ensure the copied buf is NUL terminated
Currently, we allocate a nbytes-sized kernel buffer and copy nbytes from
userspace to that buffer. Later, we use sscanf on this buffer but we don't
ensure that the string is terminated inside the buffer, this can lead to
OOB read when using sscanf. Fix this issue by using memdup_user_nul
instead of memdup_user. |