Search

Search Results (325111 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53995 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: ipv4: fix one memleak in __inet_del_ifa() I got the below warning when do fuzzing test: unregister_netdevice: waiting for bond0 to become free. Usage count = 2 It can be repoduced via: ip link add bond0 type bond sysctl -w net.ipv4.conf.bond0.promote_secondaries=1 ip addr add 4.117.174.103/0 scope 0x40 dev bond0 ip addr add 192.168.100.111/255.255.255.254 scope 0 dev bond0 ip addr add 0.0.0.4/0 scope 0x40 secondary dev bond0 ip addr del 4.117.174.103/0 scope 0x40 dev bond0 ip link delete bond0 type bond In this reproduction test case, an incorrect 'last_prim' is found in __inet_del_ifa(), as a result, the secondary address(0.0.0.4/0 scope 0x40) is lost. The memory of the secondary address is leaked and the reference of in_device and net_device is leaked. Fix this problem: Look for 'last_prim' starting at location of the deleted IP and inserting the promoted IP into the location of 'last_prim'.
CVE-2025-13712 1 Tencent 1 Hunyuandit 2025-12-29 N/A
Tencent HunyuanDiT merge Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent HunyuanDiT. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the merge endpoint. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27190.
CVE-2025-13713 1 Tencent 1 Hunyuan3d-1 2025-12-29 N/A
Tencent Hunyuan3D-1 load_pretrained Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent Hunyuan3D-1. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the load_pretrained function. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27191.
CVE-2023-54033 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: fix a memory leak in the LRU and LRU_PERCPU hash maps The LRU and LRU_PERCPU maps allocate a new element on update before locking the target hash table bucket. Right after that the maps try to lock the bucket. If this fails, then maps return -EBUSY to the caller without releasing the allocated element. This makes the element untracked: it doesn't belong to either of free lists, and it doesn't belong to the hash table, so can't be re-used; this eventually leads to the permanent -ENOMEM on LRU map updates, which is unexpected. Fix this by returning the element to the local free list if bucket locking fails.
CVE-2023-54039 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: can: j1939: j1939_tp_tx_dat_new(): fix out-of-bounds memory access In the j1939_tp_tx_dat_new() function, an out-of-bounds memory access could occur during the memcpy() operation if the size of skb->cb is larger than the size of struct j1939_sk_buff_cb. This is because the memcpy() operation uses the size of skb->cb, leading to a read beyond the struct j1939_sk_buff_cb. Updated the memcpy() operation to use the size of struct j1939_sk_buff_cb instead of the size of skb->cb. This ensures that the memcpy() operation only reads the memory within the bounds of struct j1939_sk_buff_cb, preventing out-of-bounds memory access. Additionally, add a BUILD_BUG_ON() to check that the size of skb->cb is greater than or equal to the size of struct j1939_sk_buff_cb. This ensures that the skb->cb buffer is large enough to hold the j1939_sk_buff_cb structure. [mkl: rephrase commit message]
CVE-2023-54042 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/64s: Fix VAS mm use after free The refcount on mm is dropped before the coprocessor is detached.
CVE-2025-68344 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: ALSA: wavefront: Fix integer overflow in sample size validation The wavefront_send_sample() function has an integer overflow issue when validating sample size. The header->size field is u32 but gets cast to int for comparison with dev->freemem Fix by using unsigned comparison to avoid integer overflow.
CVE-2025-68345 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: hda: cs35l41: Fix NULL pointer dereference in cs35l41_hda_read_acpi() The acpi_get_first_physical_node() function can return NULL, in which case the get_device() function also returns NULL, but this value is then dereferenced without checking,so add a check to prevent a crash. Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2025-68358 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix racy bitfield write in btrfs_clear_space_info_full() From the memory-barriers.txt document regarding memory barrier ordering guarantees: (*) These guarantees do not apply to bitfields, because compilers often generate code to modify these using non-atomic read-modify-write sequences. Do not attempt to use bitfields to synchronize parallel algorithms. (*) Even in cases where bitfields are protected by locks, all fields in a given bitfield must be protected by one lock. If two fields in a given bitfield are protected by different locks, the compiler's non-atomic read-modify-write sequences can cause an update to one field to corrupt the value of an adjacent field. btrfs_space_info has a bitfield sharing an underlying word consisting of the fields full, chunk_alloc, and flush: struct btrfs_space_info { struct btrfs_fs_info * fs_info; /* 0 8 */ struct btrfs_space_info * parent; /* 8 8 */ ... int clamp; /* 172 4 */ unsigned int full:1; /* 176: 0 4 */ unsigned int chunk_alloc:1; /* 176: 1 4 */ unsigned int flush:1; /* 176: 2 4 */ ... Therefore, to be safe from parallel read-modify-writes losing a write to one of the bitfield members protected by a lock, all writes to all the bitfields must use the lock. They almost universally do, except for btrfs_clear_space_info_full() which iterates over the space_infos and writes out found->full = 0 without a lock. Imagine that we have one thread completing a transaction in which we finished deleting a block_group and are thus calling btrfs_clear_space_info_full() while simultaneously the data reclaim ticket infrastructure is running do_async_reclaim_data_space(): T1 T2 btrfs_commit_transaction btrfs_clear_space_info_full data_sinfo->full = 0 READ: full:0, chunk_alloc:0, flush:1 do_async_reclaim_data_space(data_sinfo) spin_lock(&space_info->lock); if(list_empty(tickets)) space_info->flush = 0; READ: full: 0, chunk_alloc:0, flush:1 MOD/WRITE: full: 0, chunk_alloc:0, flush:0 spin_unlock(&space_info->lock); return; MOD/WRITE: full:0, chunk_alloc:0, flush:1 and now data_sinfo->flush is 1 but the reclaim worker has exited. This breaks the invariant that flush is 0 iff there is no work queued or running. Once this invariant is violated, future allocations that go into __reserve_bytes() will add tickets to space_info->tickets but will see space_info->flush is set to 1 and not queue the work. After this, they will block forever on the resulting ticket, as it is now impossible to kick the worker again. I also confirmed by looking at the assembly of the affected kernel that it is doing RMW operations. For example, to set the flush (3rd) bit to 0, the assembly is: andb $0xfb,0x60(%rbx) and similarly for setting the full (1st) bit to 0: andb $0xfe,-0x20(%rax) So I think this is really a bug on practical systems. I have observed a number of systems in this exact state, but am currently unable to reproduce it. Rather than leaving this footgun lying around for the future, take advantage of the fact that there is room in the struct anyway, and that it is already quite large and simply change the three bitfield members to bools. This avoids writes to space_info->full having any effect on ---truncated---
CVE-2021-47736 1 Cmsimple-xh 1 Cmsimple Xh 2025-12-29 8.8 High
CMSimple_XH 1.7.4 contains an authenticated remote code execution vulnerability in the content editing functionality that allows administrative users to upload malicious PHP files. Attackers with valid credentials can exploit the CSRF token mechanism to create a PHP shell file that enables arbitrary command execution on the server.
CVE-2025-13715 1 Tencent 1 Facedetection-dsfd 2025-12-29 N/A
Tencent FaceDetection-DSFD resnet Deserialization of Untrusted Data Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Tencent FaceDetection-DSFD. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the resnet endpoint. The issue results from the lack of proper validation of user-supplied data, which can result in deserialization of untrusted data. An attacker can leverage this vulnerability to execute code in the context of root. Was ZDI-CAN-27197.
CVE-2025-14406 1 Sodapdf 1 Soda Pdf Desktop 2025-12-29 N/A
Soda PDF Desktop Uncontrolled Search Path Element Local Privilege Escalation Vulnerability. This vulnerability allows local attackers to escalate privileges on affected installations of Soda PDF Desktop. An attacker must first obtain the ability to execute low-privileged code on the target system in order to exploit this vulnerability. The specific flaw exists within the configuration of OpenSSL. The product loads an OpenSSL configuration file from an unsecured location. An attacker can leverage this vulnerability to escalate privileges and execute arbitrary code in the context of SYSTEM. Was ZDI-CAN-25793.
CVE-2025-14407 1 Sodapdf 1 Soda Pdf Desktop 2025-12-29 N/A
Soda PDF Desktop PDF File Parsing Memory Corruption Information Disclosure Vulnerability. This vulnerability allows remote attackers to disclose sensitive information on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of PDF files. The issue results from the lack of proper validation of user-supplied data, which can result in a memory corruption condition. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the current process. Was ZDI-CAN-27141.
CVE-2025-14408 1 Sodapdf 1 Soda Pdf Desktop 2025-12-29 N/A
Soda PDF Desktop PDF File Parsing Out-Of-Bounds Read Information Disclosure Vulnerability. This vulnerability allows remote attackers to disclose sensitive information on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of PDF files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated object. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the current process. Was ZDI-CAN-27143.
CVE-2025-14409 1 Sodapdf 1 Soda Pdf Desktop 2025-12-29 N/A
Soda PDF Desktop PDF File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of PDF files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-27120.
CVE-2025-14410 1 Sodapdf 1 Soda Pdf Desktop 2025-12-29 N/A
Soda PDF Desktop PDF File Parsing Out-Of-Bounds Read Information Disclosure Vulnerability. This vulnerability allows remote attackers to disclose sensitive information on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of PDF files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated object. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the current process. Was ZDI-CAN-27142.
CVE-2025-14411 1 Sodapdf 1 Soda Pdf Desktop 2025-12-29 N/A
Soda PDF Desktop PDF File Parsing Out-Of-Bounds Read Information Disclosure Vulnerability. This vulnerability allows remote attackers to disclose sensitive information on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of PDF files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated object. An attacker can leverage this in conjunction with other vulnerabilities to execute arbitrary code in the context of the current process. Was ZDI-CAN-27140.
CVE-2025-14412 1 Sodapdf 1 Soda Pdf Desktop 2025-12-29 N/A
Soda PDF Desktop XLS File Insufficient UI Warning Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the handling of XLS files. The issue results from allowing the execution of dangerous script without user warning. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27495.
CVE-2025-14415 1 Sodapdf 1 Soda Pdf Desktop 2025-12-29 N/A
Soda PDF Desktop Launch Insufficient UI Warning Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Soda PDF Desktop. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the implementation of the Launch action. The issue results from allowing the execution of dangerous script without user warning. An attacker can leverage this vulnerability to execute code in the context of the current user. Was ZDI-CAN-27494.
CVE-2025-66444 1 Hitachi 2 Infrastructure Analytics Advisor, Ops Center Analyzer 2025-12-29 8.2 High
Cross-site Scripting vulnerability in Hitachi Infrastructure Analytics Advisor (Data Center Analytics component) and Hitachi Ops Center Analyzer (Hitachi Ops Center Analyzer detail view component).This issue affects Hitachi Infrastructure Analytics Advisor:; Hitachi Ops Center Analyzer: from 10.0.0-00 before 11.0.5-00.