Search

Search Results (327994 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-69990 1 Phpgurukul 1 News Portal Project 2026-01-14 9.1 Critical
phpgurukul News Portal Project V4.1 has an Arbitrary File Deletion Vulnerability in remove_file.php. The parameter file can cause any file to be deleted.
CVE-2025-71024 1 Tenda 1 Ax3 2026-01-14 N/A
Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow in the serviceName2 parameter of the fromAdvSetMacMtuWan function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request.
CVE-2025-71065 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid potential deadlock As Jiaming Zhang and syzbot reported, there is potential deadlock in f2fs as below: Chain exists of: &sbi->cp_rwsem --> fs_reclaim --> sb_internal#2 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- rlock(sb_internal#2); lock(fs_reclaim); lock(sb_internal#2); rlock(&sbi->cp_rwsem); *** DEADLOCK *** 3 locks held by kswapd0/73: #0: ffffffff8e247a40 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat mm/vmscan.c:7015 [inline] #0: ffffffff8e247a40 (fs_reclaim){+.+.}-{0:0}, at: kswapd+0x951/0x2800 mm/vmscan.c:7389 #1: ffff8880118400e0 (&type->s_umount_key#50){.+.+}-{4:4}, at: super_trylock_shared fs/super.c:562 [inline] #1: ffff8880118400e0 (&type->s_umount_key#50){.+.+}-{4:4}, at: super_cache_scan+0x91/0x4b0 fs/super.c:197 #2: ffff888011840610 (sb_internal#2){.+.+}-{0:0}, at: f2fs_evict_inode+0x8d9/0x1b60 fs/f2fs/inode.c:890 stack backtrace: CPU: 0 UID: 0 PID: 73 Comm: kswapd0 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_circular_bug+0x2ee/0x310 kernel/locking/lockdep.c:2043 check_noncircular+0x134/0x160 kernel/locking/lockdep.c:2175 check_prev_add kernel/locking/lockdep.c:3165 [inline] check_prevs_add kernel/locking/lockdep.c:3284 [inline] validate_chain+0xb9b/0x2140 kernel/locking/lockdep.c:3908 __lock_acquire+0xab9/0xd20 kernel/locking/lockdep.c:5237 lock_acquire+0x120/0x360 kernel/locking/lockdep.c:5868 down_read+0x46/0x2e0 kernel/locking/rwsem.c:1537 f2fs_down_read fs/f2fs/f2fs.h:2278 [inline] f2fs_lock_op fs/f2fs/f2fs.h:2357 [inline] f2fs_do_truncate_blocks+0x21c/0x10c0 fs/f2fs/file.c:791 f2fs_truncate_blocks+0x10a/0x300 fs/f2fs/file.c:867 f2fs_truncate+0x489/0x7c0 fs/f2fs/file.c:925 f2fs_evict_inode+0x9f2/0x1b60 fs/f2fs/inode.c:897 evict+0x504/0x9c0 fs/inode.c:810 f2fs_evict_inode+0x1dc/0x1b60 fs/f2fs/inode.c:853 evict+0x504/0x9c0 fs/inode.c:810 dispose_list fs/inode.c:852 [inline] prune_icache_sb+0x21b/0x2c0 fs/inode.c:1000 super_cache_scan+0x39b/0x4b0 fs/super.c:224 do_shrink_slab+0x6ef/0x1110 mm/shrinker.c:437 shrink_slab_memcg mm/shrinker.c:550 [inline] shrink_slab+0x7ef/0x10d0 mm/shrinker.c:628 shrink_one+0x28a/0x7c0 mm/vmscan.c:4955 shrink_many mm/vmscan.c:5016 [inline] lru_gen_shrink_node mm/vmscan.c:5094 [inline] shrink_node+0x315d/0x3780 mm/vmscan.c:6081 kswapd_shrink_node mm/vmscan.c:6941 [inline] balance_pgdat mm/vmscan.c:7124 [inline] kswapd+0x147c/0x2800 mm/vmscan.c:7389 kthread+0x70e/0x8a0 kernel/kthread.c:463 ret_from_fork+0x4bc/0x870 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> The root cause is deadlock among four locks as below: kswapd - fs_reclaim --- Lock A - shrink_one - evict - f2fs_evict_inode - sb_start_intwrite --- Lock B - iput - evict - f2fs_evict_inode - sb_start_intwrite --- Lock B - f2fs_truncate - f2fs_truncate_blocks - f2fs_do_truncate_blocks - f2fs_lock_op --- Lock C ioctl - f2fs_ioc_commit_atomic_write - f2fs_lock_op --- Lock C - __f2fs_commit_atomic_write - __replace_atomic_write_block - f2fs_get_dnode_of_data - __get_node_folio - f2fs_check_nid_range - f2fs_handle_error - f2fs_record_errors - f2fs_down_write --- Lock D open - do_open - do_truncate - security_inode_need_killpriv - f2fs_getxattr - lookup_all_xattrs - f2fs_handle_error - f2fs_record_errors - f2fs_down_write --- Lock D - f2fs_commit_super - read_mapping_folio - filemap_alloc_folio_noprof - prepare_alloc_pages - fs_reclaim_acquire --- Lock A In order to a ---truncated---
CVE-2025-71078 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/64s/slb: Fix SLB multihit issue during SLB preload On systems using the hash MMU, there is a software SLB preload cache that mirrors the entries loaded into the hardware SLB buffer. This preload cache is subject to periodic eviction — typically after every 256 context switches — to remove old entry. To optimize performance, the kernel skips switch_mmu_context() in switch_mm_irqs_off() when the prev and next mm_struct are the same. However, on hash MMU systems, this can lead to inconsistencies between the hardware SLB and the software preload cache. If an SLB entry for a process is evicted from the software cache on one CPU, and the same process later runs on another CPU without executing switch_mmu_context(), the hardware SLB may retain stale entries. If the kernel then attempts to reload that entry, it can trigger an SLB multi-hit error. The following timeline shows how stale SLB entries are created and can cause a multi-hit error when a process moves between CPUs without a MMU context switch. CPU 0 CPU 1 ----- ----- Process P exec swapper/1 load_elf_binary begin_new_exc activate_mm switch_mm_irqs_off switch_mmu_context switch_slb /* * This invalidates all * the entries in the HW * and setup the new HW * SLB entries as per the * preload cache. */ context_switch sched_migrate_task migrates process P to cpu-1 Process swapper/0 context switch (to process P) (uses mm_struct of Process P) switch_mm_irqs_off() switch_slb load_slb++ /* * load_slb becomes 0 here * and we evict an entry from * the preload cache with * preload_age(). We still * keep HW SLB and preload * cache in sync, that is * because all HW SLB entries * anyways gets evicted in * switch_slb during SLBIA. * We then only add those * entries back in HW SLB, * which are currently * present in preload_cache * (after eviction). */ load_elf_binary continues... setup_new_exec() slb_setup_new_exec() sched_switch event sched_migrate_task migrates process P to cpu-0 context_switch from swapper/0 to Process P switch_mm_irqs_off() /* * Since both prev and next mm struct are same we don't call * switch_mmu_context(). This will cause the HW SLB and SW preload * cache to go out of sync in preload_new_slb_context. Because there * was an SLB entry which was evicted from both HW and preload cache * on cpu-1. Now later in preload_new_slb_context(), when we will try * to add the same preload entry again, we will add this to the SW * preload cache and then will add it to the HW SLB. Since on cpu-0 * this entry was never invalidated, hence adding this entry to the HW * SLB will cause a SLB multi-hit error. */ load_elf_binary cont ---truncated---
CVE-2026-0403 1 Netgear 10 Rbe970, Rbe971, Rbr750 and 7 more 2026-01-14 N/A
An insufficient input validation vulnerability in NETGEAR Orbi routers allows attackers connected to the router's LAN to execute OS command injections.
CVE-2026-0406 1 Netgear 1 Xr1000v2 2026-01-14 N/A
An insufficient input validation vulnerability in the NETGEAR XR1000v2 allows attackers connected to the router's LAN to execute OS command injections.
CVE-2026-0684 2 Codepeople, Wordpress 2 Cp Image Store With Slideshow, Wordpress 2026-01-14 4.3 Medium
The CP Image Store with Slideshow plugin for WordPress is vulnerable to authorization bypass in all versions up to, and including, 1.1.9 due to a logic error in the 'cpis_admin_init' function's permission check. This makes it possible for authenticated attackers, with Contributor-level access and above, to import arbitrary products via XML, if the XML file has already been uploaded to the server.
CVE-2025-68807 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: fix race between wbt_enable_default and IO submission When wbt_enable_default() is moved out of queue freezing in elevator_change(), it can cause the wbt inflight counter to become negative (-1), leading to hung tasks in the writeback path. Tasks get stuck in wbt_wait() because the counter is in an inconsistent state. The issue occurs because wbt_enable_default() could race with IO submission, allowing the counter to be decremented before proper initialization. This manifests as: rq_wait[0]: inflight: -1 has_waiters: True rwb_enabled() checks the state, which can be updated exactly between wbt_wait() (rq_qos_throttle()) and wbt_track()(rq_qos_track()), then the inflight counter will become negative. And results in hung task warnings like: task:kworker/u24:39 state:D stack:0 pid:14767 Call Trace: rq_qos_wait+0xb4/0x150 wbt_wait+0xa9/0x100 __rq_qos_throttle+0x24/0x40 blk_mq_submit_bio+0x672/0x7b0 ... Fix this by: 1. Splitting wbt_enable_default() into: - __wbt_enable_default(): Returns true if wbt_init() should be called - wbt_enable_default(): Wrapper for existing callers (no init) - wbt_init_enable_default(): New function that checks and inits WBT 2. Using wbt_init_enable_default() in blk_register_queue() to ensure proper initialization during queue registration 3. Move wbt_init() out of wbt_enable_default() which is only for enabling disabled wbt from bfq and iocost, and wbt_init() isn't needed. Then the original lock warning can be avoided. 4. Removing the ELEVATOR_FLAG_ENABLE_WBT_ON_EXIT flag and its handling code since it's no longer needed This ensures WBT is properly initialized before any IO can be submitted, preventing the counter from going negative.
CVE-2025-68808 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: media: vidtv: initialize local pointers upon transfer of memory ownership vidtv_channel_si_init() creates a temporary list (program, service, event) and ownership of the memory itself is transferred to the PAT/SDT/EIT tables through vidtv_psi_pat_program_assign(), vidtv_psi_sdt_service_assign(), vidtv_psi_eit_event_assign(). The problem here is that the local pointer where the memory ownership transfer was completed is not initialized to NULL. This causes the vidtv_psi_pmt_create_sec_for_each_pat_entry() function to fail, and in the flow that jumps to free_eit, the memory that was freed by vidtv_psi_*_table_destroy() can be accessed again by vidtv_psi_*_event_destroy() due to the uninitialized local pointer, so it is freed once again. Therefore, to prevent use-after-free and double-free vulnerability, local pointers must be initialized to NULL when transferring memory ownership.
CVE-2025-68812 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: media: iris: Add sanity check for stop streaming Add sanity check in iris_vb2_stop_streaming. If inst->state is already IRIS_INST_ERROR, we should skip the stream_off operation because it would still send packets to the firmware. In iris_kill_session, inst->state is set to IRIS_INST_ERROR and session_close is executed, which will kfree(inst_hfi_gen2->packet). If stop_streaming is called afterward, it will cause a crash. [bod: remove qcom from patch title]
CVE-2025-68813 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ipvs: fix ipv4 null-ptr-deref in route error path The IPv4 code path in __ip_vs_get_out_rt() calls dst_link_failure() without ensuring skb->dev is set, leading to a NULL pointer dereference in fib_compute_spec_dst() when ipv4_link_failure() attempts to send ICMP destination unreachable messages. The issue emerged after commit ed0de45a1008 ("ipv4: recompile ip options in ipv4_link_failure") started calling __ip_options_compile() from ipv4_link_failure(). This code path eventually calls fib_compute_spec_dst() which dereferences skb->dev. An attempt was made to fix the NULL skb->dev dereference in commit 0113d9c9d1cc ("ipv4: fix null-deref in ipv4_link_failure"), but it only addressed the immediate dev_net(skb->dev) dereference by using a fallback device. The fix was incomplete because fib_compute_spec_dst() later in the call chain still accesses skb->dev directly, which remains NULL when IPVS calls dst_link_failure(). The crash occurs when: 1. IPVS processes a packet in NAT mode with a misconfigured destination 2. Route lookup fails in __ip_vs_get_out_rt() before establishing a route 3. The error path calls dst_link_failure(skb) with skb->dev == NULL 4. ipv4_link_failure() → ipv4_send_dest_unreach() → __ip_options_compile() → fib_compute_spec_dst() 5. fib_compute_spec_dst() dereferences NULL skb->dev Apply the same fix used for IPv6 in commit 326bf17ea5d4 ("ipvs: fix ipv6 route unreach panic"): set skb->dev from skb_dst(skb)->dev before calling dst_link_failure(). KASAN: null-ptr-deref in range [0x0000000000000328-0x000000000000032f] CPU: 1 PID: 12732 Comm: syz.1.3469 Not tainted 6.6.114 #2 RIP: 0010:__in_dev_get_rcu include/linux/inetdevice.h:233 RIP: 0010:fib_compute_spec_dst+0x17a/0x9f0 net/ipv4/fib_frontend.c:285 Call Trace: <TASK> spec_dst_fill net/ipv4/ip_options.c:232 spec_dst_fill net/ipv4/ip_options.c:229 __ip_options_compile+0x13a1/0x17d0 net/ipv4/ip_options.c:330 ipv4_send_dest_unreach net/ipv4/route.c:1252 ipv4_link_failure+0x702/0xb80 net/ipv4/route.c:1265 dst_link_failure include/net/dst.h:437 __ip_vs_get_out_rt+0x15fd/0x19e0 net/netfilter/ipvs/ip_vs_xmit.c:412 ip_vs_nat_xmit+0x1d8/0xc80 net/netfilter/ipvs/ip_vs_xmit.c:764
CVE-2025-68814 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring: fix filename leak in __io_openat_prep() __io_openat_prep() allocates a struct filename using getname(). However, for the condition of the file being installed in the fixed file table as well as having O_CLOEXEC flag set, the function returns early. At that point, the request doesn't have REQ_F_NEED_CLEANUP flag set. Due to this, the memory for the newly allocated struct filename is not cleaned up, causing a memory leak. Fix this by setting the REQ_F_NEED_CLEANUP for the request just after the successful getname() call, so that when the request is torn down, the filename will be cleaned up, along with other resources needing cleanup.
CVE-2025-68820 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: xattr: fix null pointer deref in ext4_raw_inode() If ext4_get_inode_loc() fails (e.g. if it returns -EFSCORRUPTED), iloc.bh will remain set to NULL. Since ext4_xattr_inode_dec_ref_all() lacks error checking, this will lead to a null pointer dereference in ext4_raw_inode(), called right after ext4_get_inode_loc(). Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2025-68822 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Input: alps - fix use-after-free bugs caused by dev3_register_work The dev3_register_work delayed work item is initialized within alps_reconnect() and scheduled upon receipt of the first bare PS/2 packet from an external PS/2 device connected to the ALPS touchpad. During device detachment, the original implementation calls flush_workqueue() in psmouse_disconnect() to ensure completion of dev3_register_work. However, the flush_workqueue() in psmouse_disconnect() only blocks and waits for work items that were already queued to the workqueue prior to its invocation. Any work items submitted after flush_workqueue() is called are not included in the set of tasks that the flush operation awaits. This means that after flush_workqueue() has finished executing, the dev3_register_work could still be scheduled. Although the psmouse state is set to PSMOUSE_CMD_MODE in psmouse_disconnect(), the scheduling of dev3_register_work remains unaffected. The race condition can occur as follows: CPU 0 (cleanup path) | CPU 1 (delayed work) psmouse_disconnect() | psmouse_set_state() | flush_workqueue() | alps_report_bare_ps2_packet() alps_disconnect() | psmouse_queue_work() kfree(priv); // FREE | alps_register_bare_ps2_mouse() | priv = container_of(work...); // USE | priv->dev3 // USE Add disable_delayed_work_sync() in alps_disconnect() to ensure that dev3_register_work is properly canceled and prevented from executing after the alps_data structure has been deallocated. This bug is identified by static analysis.
CVE-2024-54855 2026-01-14 6.4 Medium
fabricators Ltd Vanilla OS 2 Core image v1.1.0 was discovered to contain static keys for the SSH service, allowing attackers to possibly execute a man-in-the-middle attack during connections with other hosts.
CVE-2025-12548 1 Redhat 1 Openshift Devspaces 2026-01-14 9 Critical
A flaw was found in Eclipse Che che-machine-exec. This vulnerability allows unauthenticated remote arbitrary command execution and secret exfiltration (SSH keys, tokens, etc.) from other users' Developer Workspace containers, via an unauthenticated JSON-RPC / websocket API exposed on TCP port 3333.
CVE-2025-13447 1 Progress 1 Loadmaster 2026-01-14 8.4 High
OS Command Injection Remote Code Execution Vulnerability in API in Progress LoadMaster allows an authenticated attacker with “User Administration” permissions to execute arbitrary commands on the LoadMaster appliance by exploiting unsanitized input in the API input parameters
CVE-2025-14507 2 Metagauss, Wordpress 2 Eventprime, Wordpress 2026-01-14 5.3 Medium
The EventPrime - Events Calendar, Bookings and Tickets plugin for WordPress is vulnerable to Sensitive Information Exposure in all versions up to, and including, 4.2.7.0 via the REST API. This makes it possible for unauthenticated attackers to extract sensitive booking data including user names, email addresses, ticket details, payment information, and order keys when the API is enabled by an administrator. The vulnerability was partially patched in version 4.2.7.0.
CVE-2025-68823 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ublk: fix deadlock when reading partition table When one process(such as udev) opens ublk block device (e.g., to read the partition table via bdev_open()), a deadlock[1] can occur: 1. bdev_open() grabs disk->open_mutex 2. The process issues read I/O to ublk backend to read partition table 3. In __ublk_complete_rq(), blk_update_request() or blk_mq_end_request() runs bio->bi_end_io() callbacks 4. If this triggers fput() on file descriptor of ublk block device, the work may be deferred to current task's task work (see fput() implementation) 5. This eventually calls blkdev_release() from the same context 6. blkdev_release() tries to grab disk->open_mutex again 7. Deadlock: same task waiting for a mutex it already holds The fix is to run blk_update_request() and blk_mq_end_request() with bottom halves disabled. This forces blkdev_release() to run in kernel work-queue context instead of current task work context, and allows ublk server to make forward progress, and avoids the deadlock. [axboe: rewrite comment in ublk]
CVE-2025-71066 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/sched: ets: Always remove class from active list before deleting in ets_qdisc_change zdi-disclosures@trendmicro.com says: The vulnerability is a race condition between `ets_qdisc_dequeue` and `ets_qdisc_change`. It leads to UAF on `struct Qdisc` object. Attacker requires the capability to create new user and network namespace in order to trigger the bug. See my additional commentary at the end of the analysis. Analysis: static int ets_qdisc_change(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { ... // (1) this lock is preventing .change handler (`ets_qdisc_change`) //to race with .dequeue handler (`ets_qdisc_dequeue`) sch_tree_lock(sch); for (i = nbands; i < oldbands; i++) { if (i >= q->nstrict && q->classes[i].qdisc->q.qlen) list_del_init(&q->classes[i].alist); qdisc_purge_queue(q->classes[i].qdisc); } WRITE_ONCE(q->nbands, nbands); for (i = nstrict; i < q->nstrict; i++) { if (q->classes[i].qdisc->q.qlen) { // (2) the class is added to the q->active list_add_tail(&q->classes[i].alist, &q->active); q->classes[i].deficit = quanta[i]; } } WRITE_ONCE(q->nstrict, nstrict); memcpy(q->prio2band, priomap, sizeof(priomap)); for (i = 0; i < q->nbands; i++) WRITE_ONCE(q->classes[i].quantum, quanta[i]); for (i = oldbands; i < q->nbands; i++) { q->classes[i].qdisc = queues[i]; if (q->classes[i].qdisc != &noop_qdisc) qdisc_hash_add(q->classes[i].qdisc, true); } // (3) the qdisc is unlocked, now dequeue can be called in parallel // to the rest of .change handler sch_tree_unlock(sch); ets_offload_change(sch); for (i = q->nbands; i < oldbands; i++) { // (4) we're reducing the refcount for our class's qdisc and // freeing it qdisc_put(q->classes[i].qdisc); // (5) If we call .dequeue between (4) and (5), we will have // a strong UAF and we can control RIP q->classes[i].qdisc = NULL; WRITE_ONCE(q->classes[i].quantum, 0); q->classes[i].deficit = 0; gnet_stats_basic_sync_init(&q->classes[i].bstats); memset(&q->classes[i].qstats, 0, sizeof(q->classes[i].qstats)); } return 0; } Comment: This happens because some of the classes have their qdiscs assigned to NULL, but remain in the active list. This commit fixes this issue by always removing the class from the active list before deleting and freeing its associated qdisc Reproducer Steps (trimmed version of what was sent by zdi-disclosures@trendmicro.com) ``` DEV="${DEV:-lo}" ROOT_HANDLE="${ROOT_HANDLE:-1:}" BAND2_HANDLE="${BAND2_HANDLE:-20:}" # child under 1:2 PING_BYTES="${PING_BYTES:-48}" PING_COUNT="${PING_COUNT:-200000}" PING_DST="${PING_DST:-127.0.0.1}" SLOW_TBF_RATE="${SLOW_TBF_RATE:-8bit}" SLOW_TBF_BURST="${SLOW_TBF_BURST:-100b}" SLOW_TBF_LAT="${SLOW_TBF_LAT:-1s}" cleanup() { tc qdisc del dev "$DEV" root 2>/dev/null } trap cleanup EXIT ip link set "$DEV" up tc qdisc del dev "$DEV" root 2>/dev/null || true tc qdisc add dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 2 tc qdisc add dev "$DEV" parent 1:2 handle "$BAND2_HANDLE" \ tbf rate "$SLOW_TBF_RATE" burst "$SLOW_TBF_BURST" latency "$SLOW_TBF_LAT" tc filter add dev "$DEV" parent 1: protocol all prio 1 u32 match u32 0 0 flowid 1:2 tc -s qdisc ls dev $DEV ping -I "$DEV" -f -c "$PING_COUNT" -s "$PING_BYTES" -W 0.001 "$PING_DST" \ >/dev/null 2>&1 & tc qdisc change dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 0 tc qdisc change dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 2 tc -s qdisc ls dev $DEV tc qdisc del dev "$DEV" parent ---truncated---