| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
gtp: Fix use-after-free in __gtp_encap_destroy().
syzkaller reported use-after-free in __gtp_encap_destroy(). [0]
It shows the same process freed sk and touched it illegally.
Commit e198987e7dd7 ("gtp: fix suspicious RCU usage") added lock_sock()
and release_sock() in __gtp_encap_destroy() to protect sk->sk_user_data,
but release_sock() is called after sock_put() releases the last refcnt.
[0]:
BUG: KASAN: slab-use-after-free in instrument_atomic_read_write include/linux/instrumented.h:96 [inline]
BUG: KASAN: slab-use-after-free in atomic_try_cmpxchg_acquire include/linux/atomic/atomic-instrumented.h:541 [inline]
BUG: KASAN: slab-use-after-free in queued_spin_lock include/asm-generic/qspinlock.h:111 [inline]
BUG: KASAN: slab-use-after-free in do_raw_spin_lock include/linux/spinlock.h:186 [inline]
BUG: KASAN: slab-use-after-free in __raw_spin_lock_bh include/linux/spinlock_api_smp.h:127 [inline]
BUG: KASAN: slab-use-after-free in _raw_spin_lock_bh+0x75/0xe0 kernel/locking/spinlock.c:178
Write of size 4 at addr ffff88800dbef398 by task syz-executor.2/2401
CPU: 1 PID: 2401 Comm: syz-executor.2 Not tainted 6.4.0-rc5-01219-gfa0e21fa4443 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x72/0xa0 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:351 [inline]
print_report+0xcc/0x620 mm/kasan/report.c:462
kasan_report+0xb2/0xe0 mm/kasan/report.c:572
check_region_inline mm/kasan/generic.c:181 [inline]
kasan_check_range+0x39/0x1c0 mm/kasan/generic.c:187
instrument_atomic_read_write include/linux/instrumented.h:96 [inline]
atomic_try_cmpxchg_acquire include/linux/atomic/atomic-instrumented.h:541 [inline]
queued_spin_lock include/asm-generic/qspinlock.h:111 [inline]
do_raw_spin_lock include/linux/spinlock.h:186 [inline]
__raw_spin_lock_bh include/linux/spinlock_api_smp.h:127 [inline]
_raw_spin_lock_bh+0x75/0xe0 kernel/locking/spinlock.c:178
spin_lock_bh include/linux/spinlock.h:355 [inline]
release_sock+0x1f/0x1a0 net/core/sock.c:3526
gtp_encap_disable_sock drivers/net/gtp.c:651 [inline]
gtp_encap_disable+0xb9/0x220 drivers/net/gtp.c:664
gtp_dev_uninit+0x19/0x50 drivers/net/gtp.c:728
unregister_netdevice_many_notify+0x97e/0x1520 net/core/dev.c:10841
rtnl_delete_link net/core/rtnetlink.c:3216 [inline]
rtnl_dellink+0x3c0/0xb30 net/core/rtnetlink.c:3268
rtnetlink_rcv_msg+0x450/0xb10 net/core/rtnetlink.c:6423
netlink_rcv_skb+0x15d/0x450 net/netlink/af_netlink.c:2548
netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline]
netlink_unicast+0x700/0x930 net/netlink/af_netlink.c:1365
netlink_sendmsg+0x91c/0xe30 net/netlink/af_netlink.c:1913
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg+0x1b7/0x200 net/socket.c:747
____sys_sendmsg+0x75a/0x990 net/socket.c:2493
___sys_sendmsg+0x11d/0x1c0 net/socket.c:2547
__sys_sendmsg+0xfe/0x1d0 net/socket.c:2576
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3f/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x7f1168b1fe5d
Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 73 9f 1b 00 f7 d8 64 89 01 48
RSP: 002b:00007f1167edccc8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00000000004bbf80 RCX: 00007f1168b1fe5d
RDX: 0000000000000000 RSI: 00000000200002c0 RDI: 0000000000000003
RBP: 00000000004bbf80 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007f1168b80530 R15: 0000000000000000
</TASK>
Allocated by task 1483:
kasan_save_stack+0x22/0x50 mm/kasan/common.c:45
kasan_set_track+0x25/0x30 mm/kasan/common.c:52
__kasan_slab_alloc+0x
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Fix UAF on kernel BO VA nodes
If the MMU is down, panthor_vm_unmap_range() might return an error.
We expect the page table to be updated still, and if the MMU is blocked,
the rest of the GPU should be blocked too, so no risk of accessing
physical memory returned to the system (which the current code doesn't
cover for anyway).
Proceed with the rest of the cleanup instead of bailing out and leaving
the va_node inserted in the drm_mm, which leads to UAF when other
adjacent nodes are removed from the drm_mm tree. |
| In the Linux kernel, the following vulnerability has been resolved:
maple_tree: fix potential out-of-bounds access in mas_wr_end_piv()
Check the write offset end bounds before using it as the offset into the
pivot array. This avoids a possible out-of-bounds access on the pivot
array if the write extends to the last slot in the node, in which case the
node maximum should be used as the end pivot.
akpm: this doesn't affect any current callers, but new users of mapletree
may encounter this problem if backported into earlier kernels, so let's
fix it in -stable kernels in case of this. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: fix NULL-deref on irq uninstall
In case of early initialisation errors and on platforms that do not use
the DPU controller, the deinitilisation code can be called with the kms
pointer set to NULL.
Patchwork: https://patchwork.freedesktop.org/patch/525104/ |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix WARNING in mark_buffer_dirty due to discarded buffer reuse
A syzbot stress test using a corrupted disk image reported that
mark_buffer_dirty() called from __nilfs_mark_inode_dirty() or
nilfs_palloc_commit_alloc_entry() may output a kernel warning, and can
panic if the kernel is booted with panic_on_warn.
This is because nilfs2 keeps buffer pointers in local structures for some
metadata and reuses them, but such buffers may be forcibly discarded by
nilfs_clear_dirty_page() in some critical situations.
This issue is reported to appear after commit 28a65b49eb53 ("nilfs2: do
not write dirty data after degenerating to read-only"), but the issue has
potentially existed before.
Fix this issue by checking the uptodate flag when attempting to reuse an
internally held buffer, and reloading the metadata instead of reusing the
buffer if the flag was lost. |
| In the Linux kernel, the following vulnerability has been resolved:
media: mediatek: vcodec: fix resource leaks in vdec_msg_queue_init()
If we encounter any error in the vdec_msg_queue_init() then we need
to set "msg_queue->wdma_addr.size = 0;". Normally, this is done
inside the vdec_msg_queue_deinit() function. However, if the
first call to allocate &msg_queue->wdma_addr fails, then the
vdec_msg_queue_deinit() function is a no-op. For that situation, just
set the size to zero explicitly and return.
There were two other error paths which did not clean up before returning.
Change those error paths to goto mem_alloc_err. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: drop unnecessary user-triggerable WARN_ONCE in verifierl log
It's trivial for user to trigger "verifier log line truncated" warning,
as verifier has a fixed-sized buffer of 1024 bytes (as of now), and there are at
least two pieces of user-provided information that can be output through
this buffer, and both can be arbitrarily sized by user:
- BTF names;
- BTF.ext source code lines strings.
Verifier log buffer should be properly sized for typical verifier state
output. But it's sort-of expected that this buffer won't be long enough
in some circumstances. So let's drop the check. In any case code will
work correctly, at worst truncating a part of a single line output. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/kexec: Fix double-free of elf header buffer
After
b3e34a47f989 ("x86/kexec: fix memory leak of elf header buffer"),
freeing image->elf_headers in the error path of crash_load_segments()
is not needed because kimage_file_post_load_cleanup() will take
care of that later. And not clearing it could result in a double-free.
Drop the superfluous vfree() call at the error path of
crash_load_segments(). |
| In the Linux kernel, the following vulnerability has been resolved:
media: platform: mtk-mdp3: Add missing check and free for ida_alloc
Add the check for the return value of the ida_alloc in order to avoid
NULL pointer dereference.
Moreover, free allocated "ctx->id" if mdp_m2m_open fails later in order
to avoid memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Move representor neigh cleanup to profile cleanup_tx
For IP tunnel encapsulation in ECMP (Equal-Cost Multipath) mode, as
the flow is duplicated to the peer eswitch, the related neighbour
information on the peer uplink representor is created as well.
In the cited commit, eswitch devcom unpair is moved to uplink unload
API, specifically the profile->cleanup_tx. If there is a encap rule
offloaded in ECMP mode, when one eswitch does unpair (because of
unloading the driver, for instance), and the peer rule from the peer
eswitch is going to be deleted, the use-after-free error is triggered
while accessing neigh info, as it is already cleaned up in uplink's
profile->disable, which is before its profile->cleanup_tx.
To fix this issue, move the neigh cleanup to profile's cleanup_tx
callback, and after mlx5e_cleanup_uplink_rep_tx is called. The neigh
init is moved to init_tx for symmeter.
[ 2453.376299] BUG: KASAN: slab-use-after-free in mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core]
[ 2453.379125] Read of size 4 at addr ffff888127af9008 by task modprobe/2496
[ 2453.381542] CPU: 7 PID: 2496 Comm: modprobe Tainted: G B 6.4.0-rc7+ #15
[ 2453.383386] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 2453.384335] Call Trace:
[ 2453.384625] <TASK>
[ 2453.384891] dump_stack_lvl+0x33/0x50
[ 2453.385285] print_report+0xc2/0x610
[ 2453.385667] ? __virt_addr_valid+0xb1/0x130
[ 2453.386091] ? mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core]
[ 2453.386757] kasan_report+0xae/0xe0
[ 2453.387123] ? mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core]
[ 2453.387798] mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core]
[ 2453.388465] mlx5e_rep_encap_entry_detach+0xa6/0xe0 [mlx5_core]
[ 2453.389111] mlx5e_encap_dealloc+0xa7/0x100 [mlx5_core]
[ 2453.389706] mlx5e_tc_tun_encap_dests_unset+0x61/0xb0 [mlx5_core]
[ 2453.390361] mlx5_free_flow_attr_actions+0x11e/0x340 [mlx5_core]
[ 2453.391015] ? complete_all+0x43/0xd0
[ 2453.391398] ? free_flow_post_acts+0x38/0x120 [mlx5_core]
[ 2453.392004] mlx5e_tc_del_fdb_flow+0x4ae/0x690 [mlx5_core]
[ 2453.392618] mlx5e_tc_del_fdb_peers_flow+0x308/0x370 [mlx5_core]
[ 2453.393276] mlx5e_tc_clean_fdb_peer_flows+0xf5/0x140 [mlx5_core]
[ 2453.393925] mlx5_esw_offloads_unpair+0x86/0x540 [mlx5_core]
[ 2453.394546] ? mlx5_esw_offloads_set_ns_peer.isra.0+0x180/0x180 [mlx5_core]
[ 2453.395268] ? down_write+0xaa/0x100
[ 2453.395652] mlx5_esw_offloads_devcom_event+0x203/0x530 [mlx5_core]
[ 2453.396317] mlx5_devcom_send_event+0xbb/0x190 [mlx5_core]
[ 2453.396917] mlx5_esw_offloads_devcom_cleanup+0xb0/0xd0 [mlx5_core]
[ 2453.397582] mlx5e_tc_esw_cleanup+0x42/0x120 [mlx5_core]
[ 2453.398182] mlx5e_rep_tc_cleanup+0x15/0x30 [mlx5_core]
[ 2453.398768] mlx5e_cleanup_rep_tx+0x6c/0x80 [mlx5_core]
[ 2453.399367] mlx5e_detach_netdev+0xee/0x120 [mlx5_core]
[ 2453.399957] mlx5e_netdev_change_profile+0x84/0x170 [mlx5_core]
[ 2453.400598] mlx5e_vport_rep_unload+0xe0/0xf0 [mlx5_core]
[ 2453.403781] mlx5_eswitch_unregister_vport_reps+0x15e/0x190 [mlx5_core]
[ 2453.404479] ? mlx5_eswitch_register_vport_reps+0x200/0x200 [mlx5_core]
[ 2453.405170] ? up_write+0x39/0x60
[ 2453.405529] ? kernfs_remove_by_name_ns+0xb7/0xe0
[ 2453.405985] auxiliary_bus_remove+0x2e/0x40
[ 2453.406405] device_release_driver_internal+0x243/0x2d0
[ 2453.406900] ? kobject_put+0x42/0x2d0
[ 2453.407284] bus_remove_device+0x128/0x1d0
[ 2453.407687] device_del+0x240/0x550
[ 2453.408053] ? waiting_for_supplier_show+0xe0/0xe0
[ 2453.408511] ? kobject_put+0xfa/0x2d0
[ 2453.408889] ? __kmem_cache_free+0x14d/0x280
[ 2453.409310] mlx5_rescan_drivers_locked.part.0+0xcd/0x2b0 [mlx5_core]
[ 2453.409973] mlx5_unregister_device+0x40/0x50 [mlx5_core]
[ 2453.410561] mlx5_uninit_one+0x3d/0x110 [mlx5_core]
[ 2453.411111] remove_one+0x89/0x130 [mlx5_core]
[ 24
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
usb: mtu3: fix kernel panic at qmu transfer done irq handler
When handle qmu transfer irq, it will unlock @mtu->lock before give back
request, if another thread handle disconnect event at the same time, and
try to disable ep, it may lock @mtu->lock and free qmu ring, then qmu
irq hanlder may get a NULL gpd, avoid the KE by checking gpd's value before
handling it.
e.g.
qmu done irq on cpu0 thread running on cpu1
qmu_done_tx()
handle gpd [0]
mtu3_requ_complete() mtu3_gadget_ep_disable()
unlock @mtu->lock
give back request lock @mtu->lock
mtu3_ep_disable()
mtu3_gpd_ring_free()
unlock @mtu->lock
lock @mtu->lock
get next gpd [1]
[1]: goto [0] to handle next gpd, and next gpd may be NULL. |
| A reflected cross-site scripting (XSS) vulnerability in MyNET up to v26.08 allows attackers to execute arbitrary code in the context of a user's browser via injecting a crafted payload into the parameter HTTP. |
| Unrestricted Upload of File with Dangerous Type vulnerability in Echo Call Center Services Trade and Industry Inc. Specto CM allows Remote Code Inclusion.This issue affects Specto CM: before 17032025. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd: Fix an out of bounds error in BIOS parser
The array is hardcoded to 8 in atomfirmware.h, but firmware provides
a bigger one sometimes. Deferencing the larger array causes an out
of bounds error.
commit 4fc1ba4aa589 ("drm/amd/display: fix array index out of bound error
in bios parser") fixed some of this, but there are two other cases
not covered by it. Fix those as well. |
| A vulnerability was determined in itsourcecode Online Frozen Foods Ordering System 1.0. This affects an unknown part of the file /contact_us.php. This manipulation of the argument Name causes sql injection. It is possible to initiate the attack remotely. The exploit has been publicly disclosed and may be utilized. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: sprd: Fix DMA buffer leak issue
Release DMA buffer when _probe() returns failure to avoid memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
landlock: Fix handling of disconnected directories
Disconnected files or directories can appear when they are visible and
opened from a bind mount, but have been renamed or moved from the source
of the bind mount in a way that makes them inaccessible from the mount
point (i.e. out of scope).
Previously, access rights tied to files or directories opened through a
disconnected directory were collected by walking the related hierarchy
down to the root of the filesystem, without taking into account the
mount point because it couldn't be found. This could lead to
inconsistent access results, potential access right widening, and
hard-to-debug renames, especially since such paths cannot be printed.
For a sandboxed task to create a disconnected directory, it needs to
have write access (i.e. FS_MAKE_REG, FS_REMOVE_FILE, and FS_REFER) to
the underlying source of the bind mount, and read access to the related
mount point. Because a sandboxed task cannot acquire more access
rights than those defined by its Landlock domain, this could lead to
inconsistent access rights due to missing permissions that should be
inherited from the mount point hierarchy, while inheriting permissions
from the filesystem hierarchy hidden by this mount point instead.
Landlock now handles files and directories opened from disconnected
directories by taking into account the filesystem hierarchy when the
mount point is not found in the hierarchy walk, and also always taking
into account the mount point from which these disconnected directories
were opened. This ensures that a rename is not allowed if it would
widen access rights [1].
The rationale is that, even if disconnected hierarchies might not be
visible or accessible to a sandboxed task, relying on the collected
access rights from them improves the guarantee that access rights will
not be widened during a rename because of the access right comparison
between the source and the destination (see LANDLOCK_ACCESS_FS_REFER).
It may look like this would grant more access on disconnected files and
directories, but the security policies are always enforced for all the
evaluated hierarchies. This new behavior should be less surprising to
users and safer from an access control perspective.
Remove a wrong WARN_ON_ONCE() canary in collect_domain_accesses() and
fix the related comment.
Because opened files have their access rights stored in the related file
security properties, there is no impact for disconnected or unlinked
files. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: fix null pointer deref in mt7996_conf_tx()
If a link does not have an assigned channel yet, mt7996_vif_link returns
NULL. We still need to store the updated queue settings in that case, and
apply them later.
Move the location of the queue params to within struct mt7996_vif_link. |
| An open redirect vulnerability in the login endpoint of Blitz Panel v1.17.0 allows attackers to redirect users to malicious domains via a crafted URL. This issue affects the next_url parameter in the login endpoint and could lead to phishing or token theft after successful authentication. |
| SOCA Access Control System 180612 contains multiple insecure direct object reference vulnerabilities that allow attackers to access sensitive user credentials. Attackers can retrieve authenticated and unauthenticated user password hashes and pins through unprotected endpoints like Get_Permissions_From_DB.php and Ac10_ReadSortCard. |