Search

Search Results (325056 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50753 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to do sanity check on summary info As Wenqing Liu reported in bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216456 BUG: KASAN: use-after-free in recover_data+0x63ae/0x6ae0 [f2fs] Read of size 4 at addr ffff8881464dcd80 by task mount/1013 CPU: 3 PID: 1013 Comm: mount Tainted: G W 6.0.0-rc4 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 Call Trace: dump_stack_lvl+0x45/0x5e print_report.cold+0xf3/0x68d kasan_report+0xa8/0x130 recover_data+0x63ae/0x6ae0 [f2fs] f2fs_recover_fsync_data+0x120d/0x1fc0 [f2fs] f2fs_fill_super+0x4665/0x61e0 [f2fs] mount_bdev+0x2cf/0x3b0 legacy_get_tree+0xed/0x1d0 vfs_get_tree+0x81/0x2b0 path_mount+0x47e/0x19d0 do_mount+0xce/0xf0 __x64_sys_mount+0x12c/0x1a0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd The root cause is: in fuzzed image, SSA table is corrupted: ofs_in_node is larger than ADDRS_PER_PAGE(), result in out-of-range access on 4k-size page. - recover_data - do_recover_data - check_index_in_prev_nodes - f2fs_data_blkaddr This patch adds sanity check on summary info in recovery and GC flow in where the flows rely on them. After patch: [ 29.310883] F2FS-fs (loop0): Inconsistent ofs_in_node:65286 in summary, ino:0, nid:6, max:1018
CVE-2022-50755 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: udf: Avoid double brelse() in udf_rename() syzbot reported a warning like below [1]: VFS: brelse: Trying to free free buffer WARNING: CPU: 2 PID: 7301 at fs/buffer.c:1145 __brelse+0x67/0xa0 ... Call Trace: <TASK> invalidate_bh_lru+0x99/0x150 smp_call_function_many_cond+0xe2a/0x10c0 ? generic_remap_file_range_prep+0x50/0x50 ? __brelse+0xa0/0xa0 ? __mutex_lock+0x21c/0x12d0 ? smp_call_on_cpu+0x250/0x250 ? rcu_read_lock_sched_held+0xb/0x60 ? lock_release+0x587/0x810 ? __brelse+0xa0/0xa0 ? generic_remap_file_range_prep+0x50/0x50 on_each_cpu_cond_mask+0x3c/0x80 blkdev_flush_mapping+0x13a/0x2f0 blkdev_put_whole+0xd3/0xf0 blkdev_put+0x222/0x760 deactivate_locked_super+0x96/0x160 deactivate_super+0xda/0x100 cleanup_mnt+0x222/0x3d0 task_work_run+0x149/0x240 ? task_work_cancel+0x30/0x30 do_exit+0xb29/0x2a40 ? reacquire_held_locks+0x4a0/0x4a0 ? do_raw_spin_lock+0x12a/0x2b0 ? mm_update_next_owner+0x7c0/0x7c0 ? rwlock_bug.part.0+0x90/0x90 ? zap_other_threads+0x234/0x2d0 do_group_exit+0xd0/0x2a0 __x64_sys_exit_group+0x3a/0x50 do_syscall_64+0x34/0xb0 entry_SYSCALL_64_after_hwframe+0x63/0xcd The cause of the issue is that brelse() is called on both ofibh.sbh and ofibh.ebh by udf_find_entry() when it returns NULL. However, brelse() is called by udf_rename(), too. So, b_count on buffer_head becomes unbalanced. This patch fixes the issue by not calling brelse() by udf_rename() when udf_find_entry() returns NULL.
CVE-2022-50770 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix memory leak in ocfs2_mount_volume() There is a memory leak reported by kmemleak: unreferenced object 0xffff88810cc65e60 (size 32): comm "mount.ocfs2", pid 23753, jiffies 4302528942 (age 34735.105s) hex dump (first 32 bytes): 10 00 00 00 00 00 00 00 00 01 01 01 01 01 01 01 ................ 01 01 01 01 01 01 01 01 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff8170f73d>] __kmalloc+0x4d/0x150 [<ffffffffa0ac3f51>] ocfs2_compute_replay_slots+0x121/0x330 [ocfs2] [<ffffffffa0b65165>] ocfs2_check_volume+0x485/0x900 [ocfs2] [<ffffffffa0b68129>] ocfs2_mount_volume.isra.0+0x1e9/0x650 [ocfs2] [<ffffffffa0b7160b>] ocfs2_fill_super+0xe0b/0x1740 [ocfs2] [<ffffffff818e1fe2>] mount_bdev+0x312/0x400 [<ffffffff819a086d>] legacy_get_tree+0xed/0x1d0 [<ffffffff818de82d>] vfs_get_tree+0x7d/0x230 [<ffffffff81957f92>] path_mount+0xd62/0x1760 [<ffffffff81958a5a>] do_mount+0xca/0xe0 [<ffffffff81958d3c>] __x64_sys_mount+0x12c/0x1a0 [<ffffffff82f26f15>] do_syscall_64+0x35/0x80 [<ffffffff8300006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 This call stack is related to two problems. Firstly, the ocfs2 super uses "replay_map" to trace online/offline slots, in order to recover offline slots during recovery and mount. But when ocfs2_truncate_log_init() returns an error in ocfs2_mount_volume(), the memory of "replay_map" will not be freed in error handling path. Secondly, the memory of "replay_map" will not be freed if d_make_root() returns an error in ocfs2_fill_super(). But the memory of "replay_map" will be freed normally when completing recovery and mount in ocfs2_complete_mount_recovery(). Fix the first problem by adding error handling path to free "replay_map" when ocfs2_truncate_log_init() fails. And fix the second problem by calling ocfs2_free_replay_slots(osb) in the error handling path "out_dismount". In addition, since ocfs2_free_replay_slots() is static, it is necessary to remove its static attribute and declare it in header file.
CVE-2022-50771 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rcu: Fix __this_cpu_read() lockdep warning in rcu_force_quiescent_state() Running rcutorture with non-zero fqs_duration module parameter in a kernel built with CONFIG_PREEMPTION=y results in the following splat: BUG: using __this_cpu_read() in preemptible [00000000] code: rcu_torture_fqs/398 caller is __this_cpu_preempt_check+0x13/0x20 CPU: 3 PID: 398 Comm: rcu_torture_fqs Not tainted 6.0.0-rc1-yoctodev-standard+ Call Trace: <TASK> dump_stack_lvl+0x5b/0x86 dump_stack+0x10/0x16 check_preemption_disabled+0xe5/0xf0 __this_cpu_preempt_check+0x13/0x20 rcu_force_quiescent_state.part.0+0x1c/0x170 rcu_force_quiescent_state+0x1e/0x30 rcu_torture_fqs+0xca/0x160 ? rcu_torture_boost+0x430/0x430 kthread+0x192/0x1d0 ? kthread_complete_and_exit+0x30/0x30 ret_from_fork+0x22/0x30 </TASK> The problem is that rcu_force_quiescent_state() uses __this_cpu_read() in preemptible code instead of the proper raw_cpu_read(). This commit therefore changes __this_cpu_read() to raw_cpu_read().
CVE-2022-50772 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: netdevsim: fix memory leak in nsim_bus_dev_new() If device_register() failed in nsim_bus_dev_new(), the value of reference in nsim_bus_dev->dev is 1. obj->name in nsim_bus_dev->dev will not be released. unreferenced object 0xffff88810352c480 (size 16): comm "echo", pid 5691, jiffies 4294945921 (age 133.270s) hex dump (first 16 bytes): 6e 65 74 64 65 76 73 69 6d 31 00 00 00 00 00 00 netdevsim1...... backtrace: [<000000005e2e5e26>] __kmalloc_node_track_caller+0x3a/0xb0 [<0000000094ca4fc8>] kvasprintf+0xc3/0x160 [<00000000aad09bcc>] kvasprintf_const+0x55/0x180 [<000000009bac868d>] kobject_set_name_vargs+0x56/0x150 [<000000007c1a5d70>] dev_set_name+0xbb/0xf0 [<00000000ad0d126b>] device_add+0x1f8/0x1cb0 [<00000000c222ae24>] new_device_store+0x3b6/0x5e0 [<0000000043593421>] bus_attr_store+0x72/0xa0 [<00000000cbb1833a>] sysfs_kf_write+0x106/0x160 [<00000000d0dedb8a>] kernfs_fop_write_iter+0x3a8/0x5a0 [<00000000770b66e2>] vfs_write+0x8f0/0xc80 [<0000000078bb39be>] ksys_write+0x106/0x210 [<00000000005e55a4>] do_syscall_64+0x35/0x80 [<00000000eaa40bbc>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
CVE-2022-50780 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: fix UAF issue in nfqnl_nf_hook_drop() when ops_init() failed When the ops_init() interface is invoked to initialize the net, but ops->init() fails, data is released. However, the ptr pointer in net->gen is invalid. In this case, when nfqnl_nf_hook_drop() is invoked to release the net, invalid address access occurs. The process is as follows: setup_net() ops_init() data = kzalloc(...) ---> alloc "data" net_assign_generic() ---> assign "date" to ptr in net->gen ... ops->init() ---> failed ... kfree(data); ---> ptr in net->gen is invalid ... ops_exit_list() ... nfqnl_nf_hook_drop() *q = nfnl_queue_pernet(net) ---> q is invalid The following is the Call Trace information: BUG: KASAN: use-after-free in nfqnl_nf_hook_drop+0x264/0x280 Read of size 8 at addr ffff88810396b240 by task ip/15855 Call Trace: <TASK> dump_stack_lvl+0x8e/0xd1 print_report+0x155/0x454 kasan_report+0xba/0x1f0 nfqnl_nf_hook_drop+0x264/0x280 nf_queue_nf_hook_drop+0x8b/0x1b0 __nf_unregister_net_hook+0x1ae/0x5a0 nf_unregister_net_hooks+0xde/0x130 ops_exit_list+0xb0/0x170 setup_net+0x7ac/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 </TASK> Allocated by task 15855: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_kmalloc+0xa1/0xb0 __kmalloc+0x49/0xb0 ops_init+0xe7/0x410 setup_net+0x5aa/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Freed by task 15855: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x2a/0x40 ____kasan_slab_free+0x155/0x1b0 slab_free_freelist_hook+0x11b/0x220 __kmem_cache_free+0xa4/0x360 ops_init+0xb9/0x410 setup_net+0x5aa/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0
CVE-2023-54044 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: spmi: Add a check for remove callback when removing a SPMI driver When removing a SPMI driver, there can be a crash due to NULL pointer dereference if it does not have a remove callback defined. This is one such call trace observed when removing the QCOM SPMI PMIC driver: dump_backtrace.cfi_jt+0x0/0x8 dump_stack_lvl+0xd8/0x16c panic+0x188/0x498 __cfi_slowpath+0x0/0x214 __cfi_slowpath+0x1dc/0x214 spmi_drv_remove+0x16c/0x1e0 device_release_driver_internal+0x468/0x79c driver_detach+0x11c/0x1a0 bus_remove_driver+0xc4/0x124 driver_unregister+0x58/0x84 cleanup_module+0x1c/0xc24 [qcom_spmi_pmic] __do_sys_delete_module+0x3ec/0x53c __arm64_sys_delete_module+0x18/0x28 el0_svc_common+0xdc/0x294 el0_svc+0x38/0x9c el0_sync_handler+0x8c/0xf0 el0_sync+0x1b4/0x1c0 If a driver has all its resources allocated through devm_() APIs and does not need any other explicit cleanup, it would not require a remove callback to be defined. Hence, add a check for remove callback presence before calling it when removing a SPMI driver.
CVE-2023-54079 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: power: supply: bq27xxx: Fix poll_interval handling and races on remove Before this patch bq27xxx_battery_teardown() was setting poll_interval = 0 to avoid bq27xxx_battery_update() requeuing the delayed_work item. There are 2 problems with this: 1. If the driver is unbound through sysfs, rather then the module being rmmod-ed, this changes poll_interval unexpectedly 2. This is racy, after it being set poll_interval could be changed before bq27xxx_battery_update() checks it through /sys/module/bq27xxx_battery/parameters/poll_interval Fix this by added a removed attribute to struct bq27xxx_device_info and using that instead of setting poll_interval to 0. There also is another poll_interval related race on remove(), writing /sys/module/bq27xxx_battery/parameters/poll_interval will requeue the delayed_work item for all devices on the bq27xxx_battery_devices list and the device being removed was only removed from that list after cancelling the delayed_work item. Fix this by moving the removal from the bq27xxx_battery_devices list to before cancelling the delayed_work item.
CVE-2023-54091 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/client: Fix memory leak in drm_client_target_cloned dmt_mode is allocated and never freed in this function. It was found with the ast driver, but most drivers using generic fbdev setup are probably affected. This fixes the following kmemleak report: backtrace: [<00000000b391296d>] drm_mode_duplicate+0x45/0x220 [drm] [<00000000e45bb5b3>] drm_client_target_cloned.constprop.0+0x27b/0x480 [drm] [<00000000ed2d3a37>] drm_client_modeset_probe+0x6bd/0xf50 [drm] [<0000000010e5cc9d>] __drm_fb_helper_initial_config_and_unlock+0xb4/0x2c0 [drm_kms_helper] [<00000000909f82ca>] drm_fbdev_client_hotplug+0x2bc/0x4d0 [drm_kms_helper] [<00000000063a69aa>] drm_client_register+0x169/0x240 [drm] [<00000000a8c61525>] ast_pci_probe+0x142/0x190 [ast] [<00000000987f19bb>] local_pci_probe+0xdc/0x180 [<000000004fca231b>] work_for_cpu_fn+0x4e/0xa0 [<0000000000b85301>] process_one_work+0x8b7/0x1540 [<000000003375b17c>] worker_thread+0x70a/0xed0 [<00000000b0d43cd9>] kthread+0x29f/0x340 [<000000008d770833>] ret_from_fork+0x1f/0x30 unreferenced object 0xff11000333089a00 (size 128):
CVE-2023-54099 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs: Protect reconfiguration of sb read-write from racing writes The reconfigure / remount code takes a lot of effort to protect filesystem's reconfiguration code from racing writes on remounting read-only. However during remounting read-only filesystem to read-write mode userspace writes can start immediately once we clear SB_RDONLY flag. This is inconvenient for example for ext4 because we need to do some writes to the filesystem (such as preparation of quota files) before we can take userspace writes so we are clearing SB_RDONLY flag before we are fully ready to accept userpace writes and syzbot has found a way to exploit this [1]. Also as far as I'm reading the code the filesystem remount code was protected from racing writes in the legacy mount path by the mount's MNT_READONLY flag so this is relatively new problem. It is actually fairly easy to protect remount read-write from racing writes using sb->s_readonly_remount flag so let's just do that instead of having to workaround these races in the filesystem code. [1] https://lore.kernel.org/all/00000000000006a0df05f6667499@google.com/T/
CVE-2023-54112 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: kcm: Fix memory leak in error path of kcm_sendmsg() syzbot reported a memory leak like below: BUG: memory leak unreferenced object 0xffff88810b088c00 (size 240): comm "syz-executor186", pid 5012, jiffies 4294943306 (age 13.680s) hex dump (first 32 bytes): 00 89 08 0b 81 88 ff ff 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff83e5d5ff>] __alloc_skb+0x1ef/0x230 net/core/skbuff.c:634 [<ffffffff84606e59>] alloc_skb include/linux/skbuff.h:1289 [inline] [<ffffffff84606e59>] kcm_sendmsg+0x269/0x1050 net/kcm/kcmsock.c:815 [<ffffffff83e479c6>] sock_sendmsg_nosec net/socket.c:725 [inline] [<ffffffff83e479c6>] sock_sendmsg+0x56/0xb0 net/socket.c:748 [<ffffffff83e47f55>] ____sys_sendmsg+0x365/0x470 net/socket.c:2494 [<ffffffff83e4c389>] ___sys_sendmsg+0xc9/0x130 net/socket.c:2548 [<ffffffff83e4c536>] __sys_sendmsg+0xa6/0x120 net/socket.c:2577 [<ffffffff84ad7bb8>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<ffffffff84ad7bb8>] do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80 [<ffffffff84c0008b>] entry_SYSCALL_64_after_hwframe+0x63/0xcd In kcm_sendmsg(), kcm_tx_msg(head)->last_skb is used as a cursor to append newly allocated skbs to 'head'. If some bytes are copied, an error occurred, and jumped to out_error label, 'last_skb' is left unmodified. A later kcm_sendmsg() will use an obsoleted 'last_skb' reference, corrupting the 'head' frag_list and causing the leak. This patch fixes this issue by properly updating the last allocated skb in 'last_skb'.
CVE-2023-54117 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: s390/dcssblk: fix kernel crash with list_add corruption Commit fb08a1908cb1 ("dax: simplify the dax_device <-> gendisk association") introduced new logic for gendisk association, requiring drivers to explicitly call dax_add_host() and dax_remove_host(). For dcssblk driver, some dax_remove_host() calls were missing, e.g. in device remove path. The commit also broke error handling for out_dax case in device add path, resulting in an extra put_device() w/o the previous get_device() in that case. This lead to stale xarray entries after device add / remove cycles. In the case when a previously used struct gendisk pointer (xarray index) would be used again, because blk_alloc_disk() happened to return such a pointer, the xa_insert() in dax_add_host() would fail and go to out_dax, doing the extra put_device() in the error path. In combination with an already flawed error handling in dcssblk (device_register() cleanup), which needs to be addressed in a separate patch, this resulted in a missing device_del() / klist_del(), and eventually in the kernel crash with list_add corruption on a subsequent device_add() / klist_add(). Fix this by adding the missing dax_remove_host() calls, and also move the put_device() in the error path to restore the previous logic.
CVE-2023-54121 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix incorrect splitting in btrfs_drop_extent_map_range In production we were seeing a variety of WARN_ON()'s in the extent_map code, specifically in btrfs_drop_extent_map_range() when we have to call add_extent_mapping() for our second split. Consider the following extent map layout PINNED [0 16K) [32K, 48K) and then we call btrfs_drop_extent_map_range for [0, 36K), with skip_pinned == true. The initial loop will have start = 0 end = 36K len = 36K we will find the [0, 16k) extent, but since we are pinned we will skip it, which has this code start = em_end; if (end != (u64)-1) len = start + len - em_end; em_end here is 16K, so now the values are start = 16K len = 16K + 36K - 16K = 36K len should instead be 20K. This is a problem when we find the next extent at [32K, 48K), we need to split this extent to leave [36K, 48k), however the code for the split looks like this split->start = start + len; split->len = em_end - (start + len); In this case we have em_end = 48K split->start = 16K + 36K // this should be 16K + 20K split->len = 48K - (16K + 36K) // this overflows as 16K + 36K is 52K and now we have an invalid extent_map in the tree that potentially overlaps other entries in the extent map. Even in the non-overlapping case we will have split->start set improperly, which will cause problems with any block related calculations. We don't actually need len in this loop, we can simply use end as our end point, and only adjust start up when we find a pinned extent we need to skip. Adjust the logic to do this, which keeps us from inserting an invalid extent map. We only skip_pinned in the relocation case, so this is relatively rare, except in the case where you are running relocation a lot, which can happen with auto relocation on.
CVE-2023-54131 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rt2x00: Fix memory leak when handling surveys When removing a rt2x00 device, its associated channel surveys are not freed, causing a memory leak observable with kmemleak: unreferenced object 0xffff9620f0881a00 (size 512): comm "systemd-udevd", pid 2290, jiffies 4294906974 (age 33.768s) hex dump (first 32 bytes): 70 44 12 00 00 00 00 00 92 8a 00 00 00 00 00 00 pD.............. 00 00 00 00 00 00 00 00 ab 87 01 00 00 00 00 00 ................ backtrace: [<ffffffffb0ed858b>] __kmalloc+0x4b/0x130 [<ffffffffc1b0f29b>] rt2800_probe_hw+0xc2b/0x1380 [rt2800lib] [<ffffffffc1a9496e>] rt2800usb_probe_hw+0xe/0x60 [rt2800usb] [<ffffffffc1ae491a>] rt2x00lib_probe_dev+0x21a/0x7d0 [rt2x00lib] [<ffffffffc1b3b83e>] rt2x00usb_probe+0x1be/0x980 [rt2x00usb] [<ffffffffc05981e2>] usb_probe_interface+0xe2/0x310 [usbcore] [<ffffffffb13be2d5>] really_probe+0x1a5/0x410 [<ffffffffb13be5c8>] __driver_probe_device+0x78/0x180 [<ffffffffb13be6fe>] driver_probe_device+0x1e/0x90 [<ffffffffb13be972>] __driver_attach+0xd2/0x1c0 [<ffffffffb13bbc57>] bus_for_each_dev+0x77/0xd0 [<ffffffffb13bd2a2>] bus_add_driver+0x112/0x210 [<ffffffffb13bfc6c>] driver_register+0x5c/0x120 [<ffffffffc0596ae8>] usb_register_driver+0x88/0x150 [usbcore] [<ffffffffb0c011c4>] do_one_initcall+0x44/0x220 [<ffffffffb0d6134c>] do_init_module+0x4c/0x220 Fix this by freeing the channel surveys on device removal. Tested with a RT3070 based USB wireless adapter.
CVE-2023-54132 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: erofs: stop parsing non-compact HEAD index if clusterofs is invalid Syzbot generated a crafted image [1] with a non-compact HEAD index of clusterofs 33024 while valid numbers should be 0 ~ lclustersize-1, which causes the following unexpected behavior as below: BUG: unable to handle page fault for address: fffff52101a3fff9 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 23ffed067 P4D 23ffed067 PUD 0 Oops: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 4398 Comm: kworker/u5:1 Not tainted 6.3.0-rc6-syzkaller-g09a9639e56c0 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/30/2023 Workqueue: erofs_worker z_erofs_decompressqueue_work RIP: 0010:z_erofs_decompress_queue+0xb7e/0x2b40 ... Call Trace: <TASK> z_erofs_decompressqueue_work+0x99/0xe0 process_one_work+0x8f6/0x1170 worker_thread+0xa63/0x1210 kthread+0x270/0x300 ret_from_fork+0x1f/0x30 Note that normal images or images using compact indexes are not impacted. Let's fix this now. [1] https://lore.kernel.org/r/000000000000ec75b005ee97fbaa@google.com
CVE-2025-68359 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix double free of qgroup record after failure to add delayed ref head In the previous code it was possible to incur into a double kfree() scenario when calling add_delayed_ref_head(). This could happen if the record was reported to already exist in the btrfs_qgroup_trace_extent_nolock() call, but then there was an error later on add_delayed_ref_head(). In this case, since add_delayed_ref_head() returned an error, the caller went to free the record. Since add_delayed_ref_head() couldn't set this kfree'd pointer to NULL, then kfree() would have acted on a non-NULL 'record' object which was pointing to memory already freed by the callee. The problem comes from the fact that the responsibility to kfree the object is on both the caller and the callee at the same time. Hence, the fix for this is to shift the ownership of the 'qrecord' object out of the add_delayed_ref_head(). That is, we will never attempt to kfree() the given object inside of this function, and will expect the caller to act on the 'qrecord' object on its own. The only exception where the 'qrecord' object cannot be kfree'd is if it was inserted into the tracing logic, for which we already have the 'qrecord_inserted_ret' boolean to account for this. Hence, the caller has to kfree the object only if add_delayed_ref_head() reports not to have inserted it on the tracing logic. As a side-effect of the above, we must guarantee that 'qrecord_inserted_ret' is properly initialized at the start of the function, not at the end, and then set when an actual insert happens. This way we avoid 'qrecord_inserted_ret' having an invalid value on an early exit. The documentation from the add_delayed_ref_head() has also been updated to reflect on the exact ownership of the 'qrecord' object.
CVE-2025-68363 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Check skb->transport_header is set in bpf_skb_check_mtu The bpf_skb_check_mtu helper needs to use skb->transport_header when the BPF_MTU_CHK_SEGS flag is used: bpf_skb_check_mtu(skb, ifindex, &mtu_len, 0, BPF_MTU_CHK_SEGS) The transport_header is not always set. There is a WARN_ON_ONCE report when CONFIG_DEBUG_NET is enabled + skb->gso_size is set + bpf_prog_test_run is used: WARNING: CPU: 1 PID: 2216 at ./include/linux/skbuff.h:3071 skb_gso_validate_network_len bpf_skb_check_mtu bpf_prog_3920e25740a41171_tc_chk_segs_flag # A test in the next patch bpf_test_run bpf_prog_test_run_skb For a normal ingress skb (not test_run), skb_reset_transport_header is performed but there is plan to avoid setting it as described in commit 2170a1f09148 ("net: no longer reset transport_header in __netif_receive_skb_core()"). This patch fixes the bpf helper by checking skb_transport_header_was_set(). The check is done just before skb->transport_header is used, to avoid breaking the existing bpf prog. The WARN_ON_ONCE is limited to bpf_prog_test_run, so targeting bpf-next.
CVE-2025-68369 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: ntfs3: init run lock for extend inode After setting the inode mode of $Extend to a regular file, executing the truncate system call will enter the do_truncate() routine, causing the run_lock uninitialized error reported by syzbot. Prior to patch 4e8011ffec79, if the inode mode of $Extend was not set to a regular file, the do_truncate() routine would not be entered. Add the run_lock initialization when loading $Extend. syzbot reported: INFO: trying to register non-static key. Call Trace: dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 assign_lock_key+0x133/0x150 kernel/locking/lockdep.c:984 register_lock_class+0x105/0x320 kernel/locking/lockdep.c:1299 __lock_acquire+0x99/0xd20 kernel/locking/lockdep.c:5112 lock_acquire+0x120/0x360 kernel/locking/lockdep.c:5868 down_write+0x96/0x1f0 kernel/locking/rwsem.c:1590 ntfs_set_size+0x140/0x200 fs/ntfs3/inode.c:860 ntfs_extend+0x1d9/0x970 fs/ntfs3/file.c:387 ntfs_setattr+0x2e8/0xbe0 fs/ntfs3/file.c:808
CVE-2025-68372 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nbd: defer config put in recv_work There is one uaf issue in recv_work when running NBD_CLEAR_SOCK and NBD_CMD_RECONFIGURE: nbd_genl_connect // conf_ref=2 (connect and recv_work A) nbd_open // conf_ref=3 recv_work A done // conf_ref=2 NBD_CLEAR_SOCK // conf_ref=1 nbd_genl_reconfigure // conf_ref=2 (trigger recv_work B) close nbd // conf_ref=1 recv_work B config_put // conf_ref=0 atomic_dec(&config->recv_threads); -> UAF Or only running NBD_CLEAR_SOCK: nbd_genl_connect // conf_ref=2 nbd_open // conf_ref=3 NBD_CLEAR_SOCK // conf_ref=2 close nbd nbd_release config_put // conf_ref=1 recv_work config_put // conf_ref=0 atomic_dec(&config->recv_threads); -> UAF Commit 87aac3a80af5 ("nbd: call nbd_config_put() before notifying the waiter") moved nbd_config_put() to run before waking up the waiter in recv_work, in order to ensure that nbd_start_device_ioctl() would not be woken up while nbd->task_recv was still uncleared. However, in nbd_start_device_ioctl(), after being woken up it explicitly calls flush_workqueue() to make sure all current works are finished. Therefore, there is no need to move the config put ahead of the wakeup. Move nbd_config_put() to the end of recv_work, so that the reference is held for the whole lifetime of the worker thread. This makes sure the config cannot be freed while recv_work is still running, even if clear + reconfigure interleave. In addition, we don't need to worry about recv_work dropping the last nbd_put (which causes deadlock): path A (netlink with NBD_CFLAG_DESTROY_ON_DISCONNECT): connect // nbd_refs=1 (trigger recv_work) open nbd // nbd_refs=2 NBD_CLEAR_SOCK close nbd nbd_release nbd_disconnect_and_put flush_workqueue // recv_work done nbd_config_put nbd_put // nbd_refs=1 nbd_put // nbd_refs=0 queue_work path B (netlink without NBD_CFLAG_DESTROY_ON_DISCONNECT): connect // nbd_refs=2 (trigger recv_work) open nbd // nbd_refs=3 NBD_CLEAR_SOCK // conf_refs=2 close nbd nbd_release nbd_config_put // conf_refs=1 nbd_put // nbd_refs=2 recv_work done // conf_refs=0, nbd_refs=1 rmmod // nbd_refs=0 Depends-on: e2daec488c57 ("nbd: Fix hungtask when nbd_config_put")
CVE-2022-50715 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md/raid1: stop mdx_raid1 thread when raid1 array run failed fail run raid1 array when we assemble array with the inactive disk only, but the mdx_raid1 thread were not stop, Even if the associated resources have been released. it will caused a NULL dereference when we do poweroff. This causes the following Oops: [ 287.587787] BUG: kernel NULL pointer dereference, address: 0000000000000070 [ 287.594762] #PF: supervisor read access in kernel mode [ 287.599912] #PF: error_code(0x0000) - not-present page [ 287.605061] PGD 0 P4D 0 [ 287.607612] Oops: 0000 [#1] SMP NOPTI [ 287.611287] CPU: 3 PID: 5265 Comm: md0_raid1 Tainted: G U 5.10.146 #0 [ 287.619029] Hardware name: xxxxxxx/To be filled by O.E.M, BIOS 5.19 06/16/2022 [ 287.626775] RIP: 0010:md_check_recovery+0x57/0x500 [md_mod] [ 287.632357] Code: fe 01 00 00 48 83 bb 10 03 00 00 00 74 08 48 89 ...... [ 287.651118] RSP: 0018:ffffc90000433d78 EFLAGS: 00010202 [ 287.656347] RAX: 0000000000000000 RBX: ffff888105986800 RCX: 0000000000000000 [ 287.663491] RDX: ffffc90000433bb0 RSI: 00000000ffffefff RDI: ffff888105986800 [ 287.670634] RBP: ffffc90000433da0 R08: 0000000000000000 R09: c0000000ffffefff [ 287.677771] R10: 0000000000000001 R11: ffffc90000433ba8 R12: ffff888105986800 [ 287.684907] R13: 0000000000000000 R14: fffffffffffffe00 R15: ffff888100b6b500 [ 287.692052] FS: 0000000000000000(0000) GS:ffff888277f80000(0000) knlGS:0000000000000000 [ 287.700149] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 287.705897] CR2: 0000000000000070 CR3: 000000000320a000 CR4: 0000000000350ee0 [ 287.713033] Call Trace: [ 287.715498] raid1d+0x6c/0xbbb [raid1] [ 287.719256] ? __schedule+0x1ff/0x760 [ 287.722930] ? schedule+0x3b/0xb0 [ 287.726260] ? schedule_timeout+0x1ed/0x290 [ 287.730456] ? __switch_to+0x11f/0x400 [ 287.734219] md_thread+0xe9/0x140 [md_mod] [ 287.738328] ? md_thread+0xe9/0x140 [md_mod] [ 287.742601] ? wait_woken+0x80/0x80 [ 287.746097] ? md_register_thread+0xe0/0xe0 [md_mod] [ 287.751064] kthread+0x11a/0x140 [ 287.754300] ? kthread_park+0x90/0x90 [ 287.757974] ret_from_fork+0x1f/0x30 In fact, when raid1 array run fail, we need to do md_unregister_thread() before raid1_free().