| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup: cgroup_get_from_id() must check the looked-up kn is a directory
cgroup has to be one kernfs dir, otherwise kernel panic is caused,
especially cgroup id is provide from userspace. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt: prevent skb UAF after handing over to PTP worker
When reading the timestamp is required bnxt_tx_int() hands
over the ownership of the completed skb to the PTP worker.
The skb should not be used afterwards, as the worker may
run before the rest of our code and free the skb, leading
to a use-after-free.
Since dev_kfree_skb_any() accepts NULL make the loss of
ownership more obvious and set skb to NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
vt: fix memory overlapping when deleting chars in the buffer
A memory overlapping copy occurs when deleting a long line. This memory
overlapping copy can cause data corruption when scr_memcpyw is optimized
to memcpy because memcpy does not ensure its behavior if the destination
buffer overlaps with the source buffer. The line buffer is not always
broken, because the memcpy utilizes the hardware acceleration, whose
result is not deterministic.
Fix this problem by using replacing the scr_memcpyw with scr_memmovew. |
| In the Linux kernel, the following vulnerability has been resolved:
vc_screen: move load of struct vc_data pointer in vcs_read() to avoid UAF
After a call to console_unlock() in vcs_read() the vc_data struct can be
freed by vc_deallocate(). Because of that, the struct vc_data pointer
load must be done at the top of while loop in vcs_read() to avoid a UAF
when vcs_size() is called.
Syzkaller reported a UAF in vcs_size().
BUG: KASAN: use-after-free in vcs_size (drivers/tty/vt/vc_screen.c:215)
Read of size 4 at addr ffff8881137479a8 by task 4a005ed81e27e65/1537
CPU: 0 PID: 1537 Comm: 4a005ed81e27e65 Not tainted 6.2.0-rc5 #1
Hardware name: Red Hat KVM, BIOS 1.15.0-2.module
Call Trace:
<TASK>
__asan_report_load4_noabort (mm/kasan/report_generic.c:350)
vcs_size (drivers/tty/vt/vc_screen.c:215)
vcs_read (drivers/tty/vt/vc_screen.c:415)
vfs_read (fs/read_write.c:468 fs/read_write.c:450)
...
</TASK>
Allocated by task 1191:
...
kmalloc_trace (mm/slab_common.c:1069)
vc_allocate (./include/linux/slab.h:580 ./include/linux/slab.h:720
drivers/tty/vt/vt.c:1128 drivers/tty/vt/vt.c:1108)
con_install (drivers/tty/vt/vt.c:3383)
tty_init_dev (drivers/tty/tty_io.c:1301 drivers/tty/tty_io.c:1413
drivers/tty/tty_io.c:1390)
tty_open (drivers/tty/tty_io.c:2080 drivers/tty/tty_io.c:2126)
chrdev_open (fs/char_dev.c:415)
do_dentry_open (fs/open.c:883)
vfs_open (fs/open.c:1014)
...
Freed by task 1548:
...
kfree (mm/slab_common.c:1021)
vc_port_destruct (drivers/tty/vt/vt.c:1094)
tty_port_destructor (drivers/tty/tty_port.c:296)
tty_port_put (drivers/tty/tty_port.c:312)
vt_disallocate_all (drivers/tty/vt/vt_ioctl.c:662 (discriminator 2))
vt_ioctl (drivers/tty/vt/vt_ioctl.c:903)
tty_ioctl (drivers/tty/tty_io.c:2776)
...
The buggy address belongs to the object at ffff888113747800
which belongs to the cache kmalloc-1k of size 1024
The buggy address is located 424 bytes inside of
1024-byte region [ffff888113747800, ffff888113747c00)
The buggy address belongs to the physical page:
page:00000000b3fe6c7c refcount:1 mapcount:0 mapping:0000000000000000
index:0x0 pfn:0x113740
head:00000000b3fe6c7c order:3 compound_mapcount:0 subpages_mapcount:0
compound_pincount:0
anon flags: 0x17ffffc0010200(slab|head|node=0|zone=2|lastcpupid=0x1fffff)
raw: 0017ffffc0010200 ffff888100042dc0 0000000000000000 dead000000000001
raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888113747880: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff888113747900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
> ffff888113747980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888113747a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff888113747a80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
Disabling lock debugging due to kernel taint |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Fix UAF in svc_tcp_listen_data_ready()
After the listener svc_sock is freed, and before invoking svc_tcp_accept()
for the established child sock, there is a window that the newsock
retaining a freed listener svc_sock in sk_user_data which cloning from
parent. In the race window, if data is received on the newsock, we will
observe use-after-free report in svc_tcp_listen_data_ready().
Reproduce by two tasks:
1. while :; do rpc.nfsd 0 ; rpc.nfsd; done
2. while :; do echo "" | ncat -4 127.0.0.1 2049 ; done
KASAN report:
==================================================================
BUG: KASAN: slab-use-after-free in svc_tcp_listen_data_ready+0x1cf/0x1f0 [sunrpc]
Read of size 8 at addr ffff888139d96228 by task nc/102553
CPU: 7 PID: 102553 Comm: nc Not tainted 6.3.0+ #18
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020
Call Trace:
<IRQ>
dump_stack_lvl+0x33/0x50
print_address_description.constprop.0+0x27/0x310
print_report+0x3e/0x70
kasan_report+0xae/0xe0
svc_tcp_listen_data_ready+0x1cf/0x1f0 [sunrpc]
tcp_data_queue+0x9f4/0x20e0
tcp_rcv_established+0x666/0x1f60
tcp_v4_do_rcv+0x51c/0x850
tcp_v4_rcv+0x23fc/0x2e80
ip_protocol_deliver_rcu+0x62/0x300
ip_local_deliver_finish+0x267/0x350
ip_local_deliver+0x18b/0x2d0
ip_rcv+0x2fb/0x370
__netif_receive_skb_one_core+0x166/0x1b0
process_backlog+0x24c/0x5e0
__napi_poll+0xa2/0x500
net_rx_action+0x854/0xc90
__do_softirq+0x1bb/0x5de
do_softirq+0xcb/0x100
</IRQ>
<TASK>
...
</TASK>
Allocated by task 102371:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_kmalloc+0x7b/0x90
svc_setup_socket+0x52/0x4f0 [sunrpc]
svc_addsock+0x20d/0x400 [sunrpc]
__write_ports_addfd+0x209/0x390 [nfsd]
write_ports+0x239/0x2c0 [nfsd]
nfsctl_transaction_write+0xac/0x110 [nfsd]
vfs_write+0x1c3/0xae0
ksys_write+0xed/0x1c0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
Freed by task 102551:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x2a/0x50
__kasan_slab_free+0x106/0x190
__kmem_cache_free+0x133/0x270
svc_xprt_free+0x1e2/0x350 [sunrpc]
svc_xprt_destroy_all+0x25a/0x440 [sunrpc]
nfsd_put+0x125/0x240 [nfsd]
nfsd_svc+0x2cb/0x3c0 [nfsd]
write_threads+0x1ac/0x2a0 [nfsd]
nfsctl_transaction_write+0xac/0x110 [nfsd]
vfs_write+0x1c3/0xae0
ksys_write+0xed/0x1c0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
Fix the UAF by simply doing nothing in svc_tcp_listen_data_ready()
if state != TCP_LISTEN, that will avoid dereferencing svsk for all
child socket. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix possible null pointer dereference
abo->tbo.resource may be NULL in amdgpu_vm_bo_update. |
| In the Linux kernel, the following vulnerability has been resolved:
can: dev: can_put_echo_skb(): don't crash kernel if can_priv::echo_skb is accessed out of bounds
If the "struct can_priv::echoo_skb" is accessed out of bounds, this
would cause a kernel crash. Instead, issue a meaningful warning
message and return with an error. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: synaptics-rmi4 - fix use after free in rmi_unregister_function()
The put_device() calls rmi_release_function() which frees "fn" so the
dereference on the next line "fn->num_of_irqs" is a use after free.
Move the put_device() to the end to fix this. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/psi: Fix use-after-free in ep_remove_wait_queue()
If a non-root cgroup gets removed when there is a thread that registered
trigger and is polling on a pressure file within the cgroup, the polling
waitqueue gets freed in the following path:
do_rmdir
cgroup_rmdir
kernfs_drain_open_files
cgroup_file_release
cgroup_pressure_release
psi_trigger_destroy
However, the polling thread still has a reference to the pressure file and
will access the freed waitqueue when the file is closed or upon exit:
fput
ep_eventpoll_release
ep_free
ep_remove_wait_queue
remove_wait_queue
This results in use-after-free as pasted below.
The fundamental problem here is that cgroup_file_release() (and
consequently waitqueue's lifetime) is not tied to the file's real lifetime.
Using wake_up_pollfree() here might be less than ideal, but it is in line
with the comment at commit 42288cb44c4b ("wait: add wake_up_pollfree()")
since the waitqueue's lifetime is not tied to file's one and can be
considered as another special case. While this would be fixable by somehow
making cgroup_file_release() be tied to the fput(), it would require
sizable refactoring at cgroups or higher layer which might be more
justifiable if we identify more cases like this.
BUG: KASAN: use-after-free in _raw_spin_lock_irqsave+0x60/0xc0
Write of size 4 at addr ffff88810e625328 by task a.out/4404
CPU: 19 PID: 4404 Comm: a.out Not tainted 6.2.0-rc6 #38
Hardware name: Amazon EC2 c5a.8xlarge/, BIOS 1.0 10/16/2017
Call Trace:
<TASK>
dump_stack_lvl+0x73/0xa0
print_report+0x16c/0x4e0
kasan_report+0xc3/0xf0
kasan_check_range+0x2d2/0x310
_raw_spin_lock_irqsave+0x60/0xc0
remove_wait_queue+0x1a/0xa0
ep_free+0x12c/0x170
ep_eventpoll_release+0x26/0x30
__fput+0x202/0x400
task_work_run+0x11d/0x170
do_exit+0x495/0x1130
do_group_exit+0x100/0x100
get_signal+0xd67/0xde0
arch_do_signal_or_restart+0x2a/0x2b0
exit_to_user_mode_prepare+0x94/0x100
syscall_exit_to_user_mode+0x20/0x40
do_syscall_64+0x52/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
Allocated by task 4404:
kasan_set_track+0x3d/0x60
__kasan_kmalloc+0x85/0x90
psi_trigger_create+0x113/0x3e0
pressure_write+0x146/0x2e0
cgroup_file_write+0x11c/0x250
kernfs_fop_write_iter+0x186/0x220
vfs_write+0x3d8/0x5c0
ksys_write+0x90/0x110
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 4407:
kasan_set_track+0x3d/0x60
kasan_save_free_info+0x27/0x40
____kasan_slab_free+0x11d/0x170
slab_free_freelist_hook+0x87/0x150
__kmem_cache_free+0xcb/0x180
psi_trigger_destroy+0x2e8/0x310
cgroup_file_release+0x4f/0xb0
kernfs_drain_open_files+0x165/0x1f0
kernfs_drain+0x162/0x1a0
__kernfs_remove+0x1fb/0x310
kernfs_remove_by_name_ns+0x95/0xe0
cgroup_addrm_files+0x67f/0x700
cgroup_destroy_locked+0x283/0x3c0
cgroup_rmdir+0x29/0x100
kernfs_iop_rmdir+0xd1/0x140
vfs_rmdir+0xfe/0x240
do_rmdir+0x13d/0x280
__x64_sys_rmdir+0x2c/0x30
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
of: Fix double free in of_parse_phandle_with_args_map
In of_parse_phandle_with_args_map() the inner loop that
iterates through the map entries calls of_node_put(new)
to free the reference acquired by the previous iteration
of the inner loop. This assumes that the value of "new" is
NULL on the first iteration of the inner loop.
Make sure that this is true in all iterations of the outer
loop by setting "new" to NULL after its value is assigned to "cur".
Extend the unittest to detect the double free and add an additional
test case that actually triggers this path. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: fix a potential double-free in fs_any_create_groups
When kcalloc() for ft->g succeeds but kvzalloc() for in fails,
fs_any_create_groups() will free ft->g. However, its caller
fs_any_create_table() will free ft->g again through calling
mlx5e_destroy_flow_table(), which will lead to a double-free.
Fix this by setting ft->g to NULL in fs_any_create_groups(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: fix a memleak in vmw_gmrid_man_get_node
When ida_alloc_max fails, resources allocated before should be freed,
including *res allocated by kmalloc and ttm_resource_init. |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: fix a memleak in gss_import_v2_context
The ctx->mech_used.data allocated by kmemdup is not freed in neither
gss_import_v2_context nor it only caller gss_krb5_import_sec_context,
which frees ctx on error.
Thus, this patch reform the last call of gss_import_v2_context to the
gss_krb5_import_ctx_v2, preventing the memleak while keepping the return
formation. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: s390: vsie: fix race during shadow creation
Right now it is possible to see gmap->private being zero in
kvm_s390_vsie_gmap_notifier resulting in a crash. This is due to the
fact that we add gmap->private == kvm after creation:
static int acquire_gmap_shadow(struct kvm_vcpu *vcpu,
struct vsie_page *vsie_page)
{
[...]
gmap = gmap_shadow(vcpu->arch.gmap, asce, edat);
if (IS_ERR(gmap))
return PTR_ERR(gmap);
gmap->private = vcpu->kvm;
Let children inherit the private field of the parent. |
| In the Linux kernel, the following vulnerability has been resolved:
hwrng: core - Fix page fault dead lock on mmap-ed hwrng
There is a dead-lock in the hwrng device read path. This triggers
when the user reads from /dev/hwrng into memory also mmap-ed from
/dev/hwrng. The resulting page fault triggers a recursive read
which then dead-locks.
Fix this by using a stack buffer when calling copy_to_user. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_ct: fix skb leak and crash on ooo frags
act_ct adds skb->users before defragmentation. If frags arrive in order,
the last frag's reference is reset in:
inet_frag_reasm_prepare
skb_morph
which is not straightforward.
However when frags arrive out of order, nobody unref the last frag, and
all frags are leaked. The situation is even worse, as initiating packet
capture can lead to a crash[0] when skb has been cloned and shared at the
same time.
Fix the issue by removing skb_get() before defragmentation. act_ct
returns TC_ACT_CONSUMED when defrag failed or in progress.
[0]:
[ 843.804823] ------------[ cut here ]------------
[ 843.809659] kernel BUG at net/core/skbuff.c:2091!
[ 843.814516] invalid opcode: 0000 [#1] PREEMPT SMP
[ 843.819296] CPU: 7 PID: 0 Comm: swapper/7 Kdump: loaded Tainted: G S 6.7.0-rc3 #2
[ 843.824107] Hardware name: XFUSION 1288H V6/BC13MBSBD, BIOS 1.29 11/25/2022
[ 843.828953] RIP: 0010:pskb_expand_head+0x2ac/0x300
[ 843.833805] Code: 8b 70 28 48 85 f6 74 82 48 83 c6 08 bf 01 00 00 00 e8 38 bd ff ff 8b 83 c0 00 00 00 48 03 83 c8 00 00 00 e9 62 ff ff ff 0f 0b <0f> 0b e8 8d d0 ff ff e9 b3 fd ff ff 81 7c 24 14 40 01 00 00 4c 89
[ 843.843698] RSP: 0018:ffffc9000cce07c0 EFLAGS: 00010202
[ 843.848524] RAX: 0000000000000002 RBX: ffff88811a211d00 RCX: 0000000000000820
[ 843.853299] RDX: 0000000000000640 RSI: 0000000000000000 RDI: ffff88811a211d00
[ 843.857974] RBP: ffff888127d39518 R08: 00000000bee97314 R09: 0000000000000000
[ 843.862584] R10: 0000000000000000 R11: ffff8881109f0000 R12: 0000000000000880
[ 843.867147] R13: ffff888127d39580 R14: 0000000000000640 R15: ffff888170f7b900
[ 843.871680] FS: 0000000000000000(0000) GS:ffff889ffffc0000(0000) knlGS:0000000000000000
[ 843.876242] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 843.880778] CR2: 00007fa42affcfb8 CR3: 000000011433a002 CR4: 0000000000770ef0
[ 843.885336] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 843.889809] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 843.894229] PKRU: 55555554
[ 843.898539] Call Trace:
[ 843.902772] <IRQ>
[ 843.906922] ? __die_body+0x1e/0x60
[ 843.911032] ? die+0x3c/0x60
[ 843.915037] ? do_trap+0xe2/0x110
[ 843.918911] ? pskb_expand_head+0x2ac/0x300
[ 843.922687] ? do_error_trap+0x65/0x80
[ 843.926342] ? pskb_expand_head+0x2ac/0x300
[ 843.929905] ? exc_invalid_op+0x50/0x60
[ 843.933398] ? pskb_expand_head+0x2ac/0x300
[ 843.936835] ? asm_exc_invalid_op+0x1a/0x20
[ 843.940226] ? pskb_expand_head+0x2ac/0x300
[ 843.943580] inet_frag_reasm_prepare+0xd1/0x240
[ 843.946904] ip_defrag+0x5d4/0x870
[ 843.950132] nf_ct_handle_fragments+0xec/0x130 [nf_conntrack]
[ 843.953334] tcf_ct_act+0x252/0xd90 [act_ct]
[ 843.956473] ? tcf_mirred_act+0x516/0x5a0 [act_mirred]
[ 843.959657] tcf_action_exec+0xa1/0x160
[ 843.962823] fl_classify+0x1db/0x1f0 [cls_flower]
[ 843.966010] ? skb_clone+0x53/0xc0
[ 843.969173] tcf_classify+0x24d/0x420
[ 843.972333] tc_run+0x8f/0xf0
[ 843.975465] __netif_receive_skb_core+0x67a/0x1080
[ 843.978634] ? dev_gro_receive+0x249/0x730
[ 843.981759] __netif_receive_skb_list_core+0x12d/0x260
[ 843.984869] netif_receive_skb_list_internal+0x1cb/0x2f0
[ 843.987957] ? mlx5e_handle_rx_cqe_mpwrq_rep+0xfa/0x1a0 [mlx5_core]
[ 843.991170] napi_complete_done+0x72/0x1a0
[ 843.994305] mlx5e_napi_poll+0x28c/0x6d0 [mlx5_core]
[ 843.997501] __napi_poll+0x25/0x1b0
[ 844.000627] net_rx_action+0x256/0x330
[ 844.003705] __do_softirq+0xb3/0x29b
[ 844.006718] irq_exit_rcu+0x9e/0xc0
[ 844.009672] common_interrupt+0x86/0xa0
[ 844.012537] </IRQ>
[ 844.015285] <TASK>
[ 844.017937] asm_common_interrupt+0x26/0x40
[ 844.020591] RIP: 0010:acpi_safe_halt+0x1b/0x20
[ 844.023247] Code: ff 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 65 48 8b 04 25 00 18 03 00 48 8b 00 a8 08 75 0c 66 90 0f 00 2d 81 d0 44 00 fb
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: bridge: use DEV_STATS_INC()
syzbot/KCSAN reported data-races in br_handle_frame_finish() [1]
This function can run from multiple cpus without mutual exclusion.
Adopt SMP safe DEV_STATS_INC() to update dev->stats fields.
Handles updates to dev->stats.tx_dropped while we are at it.
[1]
BUG: KCSAN: data-race in br_handle_frame_finish / br_handle_frame_finish
read-write to 0xffff8881374b2178 of 8 bytes by interrupt on cpu 1:
br_handle_frame_finish+0xd4f/0xef0 net/bridge/br_input.c:189
br_nf_hook_thresh+0x1ed/0x220
br_nf_pre_routing_finish_ipv6+0x50f/0x540
NF_HOOK include/linux/netfilter.h:304 [inline]
br_nf_pre_routing_ipv6+0x1e3/0x2a0 net/bridge/br_netfilter_ipv6.c:178
br_nf_pre_routing+0x526/0xba0 net/bridge/br_netfilter_hooks.c:508
nf_hook_entry_hookfn include/linux/netfilter.h:144 [inline]
nf_hook_bridge_pre net/bridge/br_input.c:272 [inline]
br_handle_frame+0x4c9/0x940 net/bridge/br_input.c:417
__netif_receive_skb_core+0xa8a/0x21e0 net/core/dev.c:5417
__netif_receive_skb_one_core net/core/dev.c:5521 [inline]
__netif_receive_skb+0x57/0x1b0 net/core/dev.c:5637
process_backlog+0x21f/0x380 net/core/dev.c:5965
__napi_poll+0x60/0x3b0 net/core/dev.c:6527
napi_poll net/core/dev.c:6594 [inline]
net_rx_action+0x32b/0x750 net/core/dev.c:6727
__do_softirq+0xc1/0x265 kernel/softirq.c:553
run_ksoftirqd+0x17/0x20 kernel/softirq.c:921
smpboot_thread_fn+0x30a/0x4a0 kernel/smpboot.c:164
kthread+0x1d7/0x210 kernel/kthread.c:388
ret_from_fork+0x48/0x60 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304
read-write to 0xffff8881374b2178 of 8 bytes by interrupt on cpu 0:
br_handle_frame_finish+0xd4f/0xef0 net/bridge/br_input.c:189
br_nf_hook_thresh+0x1ed/0x220
br_nf_pre_routing_finish_ipv6+0x50f/0x540
NF_HOOK include/linux/netfilter.h:304 [inline]
br_nf_pre_routing_ipv6+0x1e3/0x2a0 net/bridge/br_netfilter_ipv6.c:178
br_nf_pre_routing+0x526/0xba0 net/bridge/br_netfilter_hooks.c:508
nf_hook_entry_hookfn include/linux/netfilter.h:144 [inline]
nf_hook_bridge_pre net/bridge/br_input.c:272 [inline]
br_handle_frame+0x4c9/0x940 net/bridge/br_input.c:417
__netif_receive_skb_core+0xa8a/0x21e0 net/core/dev.c:5417
__netif_receive_skb_one_core net/core/dev.c:5521 [inline]
__netif_receive_skb+0x57/0x1b0 net/core/dev.c:5637
process_backlog+0x21f/0x380 net/core/dev.c:5965
__napi_poll+0x60/0x3b0 net/core/dev.c:6527
napi_poll net/core/dev.c:6594 [inline]
net_rx_action+0x32b/0x750 net/core/dev.c:6727
__do_softirq+0xc1/0x265 kernel/softirq.c:553
do_softirq+0x5e/0x90 kernel/softirq.c:454
__local_bh_enable_ip+0x64/0x70 kernel/softirq.c:381
__raw_spin_unlock_bh include/linux/spinlock_api_smp.h:167 [inline]
_raw_spin_unlock_bh+0x36/0x40 kernel/locking/spinlock.c:210
spin_unlock_bh include/linux/spinlock.h:396 [inline]
batadv_tt_local_purge+0x1a8/0x1f0 net/batman-adv/translation-table.c:1356
batadv_tt_purge+0x2b/0x630 net/batman-adv/translation-table.c:3560
process_one_work kernel/workqueue.c:2630 [inline]
process_scheduled_works+0x5b8/0xa30 kernel/workqueue.c:2703
worker_thread+0x525/0x730 kernel/workqueue.c:2784
kthread+0x1d7/0x210 kernel/kthread.c:388
ret_from_fork+0x48/0x60 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x11/0x20 arch/x86/entry/entry_64.S:304
value changed: 0x00000000000d7190 -> 0x00000000000d7191
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 14848 Comm: kworker/u4:11 Not tainted 6.6.0-rc1-syzkaller-00236-gad8a69f361b9 #0 |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: smsc75xx: Fix uninit-value access in __smsc75xx_read_reg
syzbot reported the following uninit-value access issue:
=====================================================
BUG: KMSAN: uninit-value in smsc75xx_wait_ready drivers/net/usb/smsc75xx.c:975 [inline]
BUG: KMSAN: uninit-value in smsc75xx_bind+0x5c9/0x11e0 drivers/net/usb/smsc75xx.c:1482
CPU: 0 PID: 8696 Comm: kworker/0:3 Not tainted 5.8.0-rc5-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: usb_hub_wq hub_event
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x21c/0x280 lib/dump_stack.c:118
kmsan_report+0xf7/0x1e0 mm/kmsan/kmsan_report.c:121
__msan_warning+0x58/0xa0 mm/kmsan/kmsan_instr.c:215
smsc75xx_wait_ready drivers/net/usb/smsc75xx.c:975 [inline]
smsc75xx_bind+0x5c9/0x11e0 drivers/net/usb/smsc75xx.c:1482
usbnet_probe+0x1152/0x3f90 drivers/net/usb/usbnet.c:1737
usb_probe_interface+0xece/0x1550 drivers/usb/core/driver.c:374
really_probe+0xf20/0x20b0 drivers/base/dd.c:529
driver_probe_device+0x293/0x390 drivers/base/dd.c:701
__device_attach_driver+0x63f/0x830 drivers/base/dd.c:807
bus_for_each_drv+0x2ca/0x3f0 drivers/base/bus.c:431
__device_attach+0x4e2/0x7f0 drivers/base/dd.c:873
device_initial_probe+0x4a/0x60 drivers/base/dd.c:920
bus_probe_device+0x177/0x3d0 drivers/base/bus.c:491
device_add+0x3b0e/0x40d0 drivers/base/core.c:2680
usb_set_configuration+0x380f/0x3f10 drivers/usb/core/message.c:2032
usb_generic_driver_probe+0x138/0x300 drivers/usb/core/generic.c:241
usb_probe_device+0x311/0x490 drivers/usb/core/driver.c:272
really_probe+0xf20/0x20b0 drivers/base/dd.c:529
driver_probe_device+0x293/0x390 drivers/base/dd.c:701
__device_attach_driver+0x63f/0x830 drivers/base/dd.c:807
bus_for_each_drv+0x2ca/0x3f0 drivers/base/bus.c:431
__device_attach+0x4e2/0x7f0 drivers/base/dd.c:873
device_initial_probe+0x4a/0x60 drivers/base/dd.c:920
bus_probe_device+0x177/0x3d0 drivers/base/bus.c:491
device_add+0x3b0e/0x40d0 drivers/base/core.c:2680
usb_new_device+0x1bd4/0x2a30 drivers/usb/core/hub.c:2554
hub_port_connect drivers/usb/core/hub.c:5208 [inline]
hub_port_connect_change drivers/usb/core/hub.c:5348 [inline]
port_event drivers/usb/core/hub.c:5494 [inline]
hub_event+0x5e7b/0x8a70 drivers/usb/core/hub.c:5576
process_one_work+0x1688/0x2140 kernel/workqueue.c:2269
worker_thread+0x10bc/0x2730 kernel/workqueue.c:2415
kthread+0x551/0x590 kernel/kthread.c:292
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:293
Local variable ----buf.i87@smsc75xx_bind created at:
__smsc75xx_read_reg drivers/net/usb/smsc75xx.c:83 [inline]
smsc75xx_wait_ready drivers/net/usb/smsc75xx.c:968 [inline]
smsc75xx_bind+0x485/0x11e0 drivers/net/usb/smsc75xx.c:1482
__smsc75xx_read_reg drivers/net/usb/smsc75xx.c:83 [inline]
smsc75xx_wait_ready drivers/net/usb/smsc75xx.c:968 [inline]
smsc75xx_bind+0x485/0x11e0 drivers/net/usb/smsc75xx.c:1482
This issue is caused because usbnet_read_cmd() reads less bytes than requested
(zero byte in the reproducer). In this case, 'buf' is not properly filled.
This patch fixes the issue by returning -ENODATA if usbnet_read_cmd() reads
less bytes than requested. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: think-lmi: Fix reference leak
If a duplicate attribute is found using kset_find_obj(), a reference
to that attribute is returned which needs to be disposed accordingly
using kobject_put(). Move the setting name validation into a separate
function to allow for this change without having to duplicate the
cleanup code for this setting.
As a side note, a very similar bug was fixed in
commit 7295a996fdab ("platform/x86: dell-sysman: Fix reference leak"),
so it seems that the bug was copied from that driver.
Compile-tested only. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_codec: Fix leaking content of local_codecs
The following memory leak can be observed when the controller supports
codecs which are stored in local_codecs list but the elements are never
freed:
unreferenced object 0xffff88800221d840 (size 32):
comm "kworker/u3:0", pid 36, jiffies 4294898739 (age 127.060s)
hex dump (first 32 bytes):
f8 d3 02 03 80 88 ff ff 80 d8 21 02 80 88 ff ff ..........!.....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffffb324f557>] __kmalloc+0x47/0x120
[<ffffffffb39ef37d>] hci_codec_list_add.isra.0+0x2d/0x160
[<ffffffffb39ef643>] hci_read_codec_capabilities+0x183/0x270
[<ffffffffb39ef9ab>] hci_read_supported_codecs+0x1bb/0x2d0
[<ffffffffb39f162e>] hci_read_local_codecs_sync+0x3e/0x60
[<ffffffffb39ff1b3>] hci_dev_open_sync+0x943/0x11e0
[<ffffffffb396d55d>] hci_power_on+0x10d/0x3f0
[<ffffffffb30c99b4>] process_one_work+0x404/0x800
[<ffffffffb30ca134>] worker_thread+0x374/0x670
[<ffffffffb30d9108>] kthread+0x188/0x1c0
[<ffffffffb304db6b>] ret_from_fork+0x2b/0x50
[<ffffffffb300206a>] ret_from_fork_asm+0x1a/0x30 |