| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
fs: writeback: fix use-after-free in __mark_inode_dirty()
An use-after-free issue occurred when __mark_inode_dirty() get the
bdi_writeback that was in the progress of switching.
CPU: 1 PID: 562 Comm: systemd-random- Not tainted 6.6.56-gb4403bd46a8e #1
......
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __mark_inode_dirty+0x124/0x418
lr : __mark_inode_dirty+0x118/0x418
sp : ffffffc08c9dbbc0
........
Call trace:
__mark_inode_dirty+0x124/0x418
generic_update_time+0x4c/0x60
file_modified+0xcc/0xd0
ext4_buffered_write_iter+0x58/0x124
ext4_file_write_iter+0x54/0x704
vfs_write+0x1c0/0x308
ksys_write+0x74/0x10c
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x48/0x114
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x40/0xe4
el0t_64_sync_handler+0x120/0x12c
el0t_64_sync+0x194/0x198
Root cause is:
systemd-random-seed kworker
----------------------------------------------------------------------
___mark_inode_dirty inode_switch_wbs_work_fn
spin_lock(&inode->i_lock);
inode_attach_wb
locked_inode_to_wb_and_lock_list
get inode->i_wb
spin_unlock(&inode->i_lock);
spin_lock(&wb->list_lock)
spin_lock(&inode->i_lock)
inode_io_list_move_locked
spin_unlock(&wb->list_lock)
spin_unlock(&inode->i_lock)
spin_lock(&old_wb->list_lock)
inode_do_switch_wbs
spin_lock(&inode->i_lock)
inode->i_wb = new_wb
spin_unlock(&inode->i_lock)
spin_unlock(&old_wb->list_lock)
wb_put_many(old_wb, nr_switched)
cgwb_release
old wb released
wb_wakeup_delayed() accesses wb,
then trigger the use-after-free
issue
Fix this race condition by holding inode spinlock until
wb_wakeup_delayed() finished. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: prevent NULL pointer dereference in UTF16 conversion
There can be a NULL pointer dereference bug here. NULL is passed to
__cifs_sfu_make_node without checks, which passes it unchecked to
cifs_strndup_to_utf16, which in turn passes it to
cifs_local_to_utf16_bytes where '*from' is dereferenced, causing a crash.
This patch adds a check for NULL 'src' in cifs_strndup_to_utf16 and
returns NULL early to prevent dereferencing NULL pointer.
Found by Linux Verification Center (linuxtesting.org) with SVACE |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix race with concurrent opens in rename(2)
Besides sending the rename request to the server, the rename process
also involves closing any deferred close, waiting for outstanding I/O
to complete as well as marking all existing open handles as deleted to
prevent them from deferring closes, which increases the race window
for potential concurrent opens on the target file.
Fix this by unhashing the dentry in advance to prevent any concurrent
opens on the target. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/smb: Fix inconsistent refcnt update
A possible inconsistent update of refcount was identified in `smb2_compound_op`.
Such inconsistent update could lead to possible resource leaks.
Why it is a possible bug:
1. In the comment section of the function, it clearly states that the
reference to `cfile` should be dropped after calling this function.
2. Every control flow path would check and drop the reference to
`cfile`, except the patched one.
3. Existing callers would not handle refcount update of `cfile` if
-ENOMEM is returned.
To fix the bug, an extra goto label "out" is added, to make sure that the
cleanup logic would always be respected. As the problem is caused by the
allocation failure of `vars`, the cleanup logic between label "finished"
and "out" can be safely ignored. According to the definition of function
`is_replayable_error`, the error code of "-ENOMEM" is not recoverable.
Therefore, the replay logic also gets ignored. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: Remove WARN_ON for device endpoint command timeouts
This commit addresses a rarely observed endpoint command timeout
which causes kernel panic due to warn when 'panic_on_warn' is enabled
and unnecessary call trace prints when 'panic_on_warn' is disabled.
It is seen during fast software-controlled connect/disconnect testcases.
The following is one such endpoint command timeout that we observed:
1. Connect
=======
->dwc3_thread_interrupt
->dwc3_ep0_interrupt
->configfs_composite_setup
->composite_setup
->usb_ep_queue
->dwc3_gadget_ep0_queue
->__dwc3_gadget_ep0_queue
->__dwc3_ep0_do_control_data
->dwc3_send_gadget_ep_cmd
2. Disconnect
==========
->dwc3_thread_interrupt
->dwc3_gadget_disconnect_interrupt
->dwc3_ep0_reset_state
->dwc3_ep0_end_control_data
->dwc3_send_gadget_ep_cmd
In the issue scenario, in Exynos platforms, we observed that control
transfers for the previous connect have not yet been completed and end
transfer command sent as a part of the disconnect sequence and
processing of USB_ENDPOINT_HALT feature request from the host timeout.
This maybe an expected scenario since the controller is processing EP
commands sent as a part of the previous connect. It maybe better to
remove WARN_ON in all places where device endpoint commands are sent to
avoid unnecessary kernel panic due to warn. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: abort transaction on unexpected eb generation at btrfs_copy_root()
If we find an unexpected generation for the extent buffer we are cloning
at btrfs_copy_root(), we just WARN_ON() and don't error out and abort the
transaction, meaning we allow to persist metadata with an unexpected
generation. Instead of warning only, abort the transaction and return
-EUCLEAN. |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: Duplicate SPI Handling
The issue originates when Strongswan initiates an XFRM_MSG_ALLOCSPI
Netlink message, which triggers the kernel function xfrm_alloc_spi().
This function is expected to ensure uniqueness of the Security Parameter
Index (SPI) for inbound Security Associations (SAs). However, it can
return success even when the requested SPI is already in use, leading
to duplicate SPIs assigned to multiple inbound SAs, differentiated
only by their destination addresses.
This behavior causes inconsistencies during SPI lookups for inbound packets.
Since the lookup may return an arbitrary SA among those with the same SPI,
packet processing can fail, resulting in packet drops.
According to RFC 4301 section 4.4.2 , for inbound processing a unicast SA
is uniquely identified by the SPI and optionally protocol.
Reproducing the Issue Reliably:
To consistently reproduce the problem, restrict the available SPI range in
charon.conf : spi_min = 0x10000000 spi_max = 0x10000002
This limits the system to only 2 usable SPI values.
Next, create more than 2 Child SA. each using unique pair of src/dst address.
As soon as the 3rd Child SA is initiated, it will be assigned a duplicate
SPI, since the SPI pool is already exhausted.
With a narrow SPI range, the issue is consistently reproducible.
With a broader/default range, it becomes rare and unpredictable.
Current implementation:
xfrm_spi_hash() lookup function computes hash using daddr, proto, and family.
So if two SAs have the same SPI but different destination addresses, then
they will:
a. Hash into different buckets
b. Be stored in different linked lists (byspi + h)
c. Not be seen in the same hlist_for_each_entry_rcu() iteration.
As a result, the lookup will result in NULL and kernel allows that Duplicate SPI
Proposed Change:
xfrm_state_lookup_spi_proto() does a truly global search - across all states,
regardless of hash bucket and matches SPI and proto. |
| In the Linux kernel, the following vulnerability has been resolved:
block: avoid possible overflow for chunk_sectors check in blk_stack_limits()
In blk_stack_limits(), we check that the t->chunk_sectors value is a
multiple of the t->physical_block_size value.
However, by finding the chunk_sectors value in bytes, we may overflow
the unsigned int which holds chunk_sectors, so change the check to be
based on sectors. |
| In the Linux kernel, the following vulnerability has been resolved:
ARM: tegra: Use I/O memcpy to write to IRAM
Kasan crashes the kernel trying to check boundaries when using the
normal memcpy. |
| In the Linux kernel, the following vulnerability has been resolved:
jbd2: prevent softlockup in jbd2_log_do_checkpoint()
Both jbd2_log_do_checkpoint() and jbd2_journal_shrink_checkpoint_list()
periodically release j_list_lock after processing a batch of buffers to
avoid long hold times on the j_list_lock. However, since both functions
contend for j_list_lock, the combined time spent waiting and processing
can be significant.
jbd2_journal_shrink_checkpoint_list() explicitly calls cond_resched() when
need_resched() is true to avoid softlockups during prolonged operations.
But jbd2_log_do_checkpoint() only exits its loop when need_resched() is
true, relying on potentially sleeping functions like __flush_batch() or
wait_on_buffer() to trigger rescheduling. If those functions do not sleep,
the kernel may hit a softlockup.
watchdog: BUG: soft lockup - CPU#3 stuck for 156s! [kworker/u129:2:373]
CPU: 3 PID: 373 Comm: kworker/u129:2 Kdump: loaded Not tainted 6.6.0+ #10
Hardware name: Huawei TaiShan 2280 /BC11SPCD, BIOS 1.27 06/13/2017
Workqueue: writeback wb_workfn (flush-7:2)
pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : native_queued_spin_lock_slowpath+0x358/0x418
lr : jbd2_log_do_checkpoint+0x31c/0x438 [jbd2]
Call trace:
native_queued_spin_lock_slowpath+0x358/0x418
jbd2_log_do_checkpoint+0x31c/0x438 [jbd2]
__jbd2_log_wait_for_space+0xfc/0x2f8 [jbd2]
add_transaction_credits+0x3bc/0x418 [jbd2]
start_this_handle+0xf8/0x560 [jbd2]
jbd2__journal_start+0x118/0x228 [jbd2]
__ext4_journal_start_sb+0x110/0x188 [ext4]
ext4_do_writepages+0x3dc/0x740 [ext4]
ext4_writepages+0xa4/0x190 [ext4]
do_writepages+0x94/0x228
__writeback_single_inode+0x48/0x318
writeback_sb_inodes+0x204/0x590
__writeback_inodes_wb+0x54/0xf8
wb_writeback+0x2cc/0x3d8
wb_do_writeback+0x2e0/0x2f8
wb_workfn+0x80/0x2a8
process_one_work+0x178/0x3e8
worker_thread+0x234/0x3b8
kthread+0xf0/0x108
ret_from_fork+0x10/0x20
So explicitly call cond_resched() in jbd2_log_do_checkpoint() to avoid
softlockup. |
| In the Linux kernel, the following vulnerability has been resolved:
parisc: Drop WARN_ON_ONCE() from flush_cache_vmap
I have observed warning to occassionally trigger. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: APEI: send SIGBUS to current task if synchronous memory error not recovered
If a synchronous error is detected as a result of user-space process
triggering a 2-bit uncorrected error, the CPU will take a synchronous
error exception such as Synchronous External Abort (SEA) on Arm64. The
kernel will queue a memory_failure() work which poisons the related
page, unmaps the page, and then sends a SIGBUS to the process, so that
a system wide panic can be avoided.
However, no memory_failure() work will be queued when abnormal
synchronous errors occur. These errors can include situations like
invalid PA, unexpected severity, no memory failure config support,
invalid GUID section, etc. In such a case, the user-space process will
trigger SEA again. This loop can potentially exceed the platform
firmware threshold or even trigger a kernel hard lockup, leading to a
system reboot.
Fix it by performing a force kill if no memory_failure() work is queued
for synchronous errors.
[ rjw: Changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
usb: core: config: Prevent OOB read in SS endpoint companion parsing
usb_parse_ss_endpoint_companion() checks descriptor type before length,
enabling a potentially odd read outside of the buffer size.
Fix this up by checking the size first before looking at any of the
fields in the descriptor. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: qgroup: fix race between quota disable and quota rescan ioctl
There's a race between a task disabling quotas and another running the
rescan ioctl that can result in a use-after-free of qgroup records from
the fs_info->qgroup_tree rbtree.
This happens as follows:
1) Task A enters btrfs_ioctl_quota_rescan() -> btrfs_qgroup_rescan();
2) Task B enters btrfs_quota_disable() and calls
btrfs_qgroup_wait_for_completion(), which does nothing because at that
point fs_info->qgroup_rescan_running is false (it wasn't set yet by
task A);
3) Task B calls btrfs_free_qgroup_config() which starts freeing qgroups
from fs_info->qgroup_tree without taking the lock fs_info->qgroup_lock;
4) Task A enters qgroup_rescan_zero_tracking() which starts iterating
the fs_info->qgroup_tree tree while holding fs_info->qgroup_lock,
but task B is freeing qgroup records from that tree without holding
the lock, resulting in a use-after-free.
Fix this by taking fs_info->qgroup_lock at btrfs_free_qgroup_config().
Also at btrfs_qgroup_rescan() don't start the rescan worker if quotas
were already disabled. |
| In the Linux kernel, the following vulnerability has been resolved:
gfs2: Set .migrate_folio in gfs2_{rgrp,meta}_aops
Clears up the warning added in 7ee3647243e5 ("migrate: Remove call to
->writepage") that occurs in various xfstests, causing "something found
in dmesg" failures.
[ 341.136573] gfs2_meta_aops does not implement migrate_folio
[ 341.136953] WARNING: CPU: 1 PID: 36 at mm/migrate.c:944 move_to_new_folio+0x2f8/0x300 |
| In the Linux kernel, the following vulnerability has been resolved:
rcu: Protect ->defer_qs_iw_pending from data race
On kernels built with CONFIG_IRQ_WORK=y, when rcu_read_unlock() is
invoked within an interrupts-disabled region of code [1], it will invoke
rcu_read_unlock_special(), which uses an irq-work handler to force the
system to notice when the RCU read-side critical section actually ends.
That end won't happen until interrupts are enabled at the soonest.
In some kernels, such as those booted with rcutree.use_softirq=y, the
irq-work handler is used unconditionally.
The per-CPU rcu_data structure's ->defer_qs_iw_pending field is
updated by the irq-work handler and is both read and updated by
rcu_read_unlock_special(). This resulted in the following KCSAN splat:
------------------------------------------------------------------------
BUG: KCSAN: data-race in rcu_preempt_deferred_qs_handler / rcu_read_unlock_special
read to 0xffff96b95f42d8d8 of 1 bytes by task 90 on cpu 8:
rcu_read_unlock_special+0x175/0x260
__rcu_read_unlock+0x92/0xa0
rt_spin_unlock+0x9b/0xc0
__local_bh_enable+0x10d/0x170
__local_bh_enable_ip+0xfb/0x150
rcu_do_batch+0x595/0xc40
rcu_cpu_kthread+0x4e9/0x830
smpboot_thread_fn+0x24d/0x3b0
kthread+0x3bd/0x410
ret_from_fork+0x35/0x40
ret_from_fork_asm+0x1a/0x30
write to 0xffff96b95f42d8d8 of 1 bytes by task 88 on cpu 8:
rcu_preempt_deferred_qs_handler+0x1e/0x30
irq_work_single+0xaf/0x160
run_irq_workd+0x91/0xc0
smpboot_thread_fn+0x24d/0x3b0
kthread+0x3bd/0x410
ret_from_fork+0x35/0x40
ret_from_fork_asm+0x1a/0x30
no locks held by irq_work/8/88.
irq event stamp: 200272
hardirqs last enabled at (200272): [<ffffffffb0f56121>] finish_task_switch+0x131/0x320
hardirqs last disabled at (200271): [<ffffffffb25c7859>] __schedule+0x129/0xd70
softirqs last enabled at (0): [<ffffffffb0ee093f>] copy_process+0x4df/0x1cc0
softirqs last disabled at (0): [<0000000000000000>] 0x0
------------------------------------------------------------------------
The problem is that irq-work handlers run with interrupts enabled, which
means that rcu_preempt_deferred_qs_handler() could be interrupted,
and that interrupt handler might contain an RCU read-side critical
section, which might invoke rcu_read_unlock_special(). In the strict
KCSAN mode of operation used by RCU, this constitutes a data race on
the ->defer_qs_iw_pending field.
This commit therefore disables interrupts across the portion of the
rcu_preempt_deferred_qs_handler() that updates the ->defer_qs_iw_pending
field. This suffices because this handler is not a fast path. |
| Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in nebelhorn Blappsta Mobile App Plugin & Your native, mobile iPhone App and Android App allows Reflected XSS.This issue affects Blappsta Mobile App Plugin – Your native, mobile iPhone App and Android App: from n/a through 0.8.8.8. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Forget ranges when refining tnum after JSET
Syzbot reported a kernel warning due to a range invariant violation on
the following BPF program.
0: call bpf_get_netns_cookie
1: if r0 == 0 goto <exit>
2: if r0 & Oxffffffff goto <exit>
The issue is on the path where we fall through both jumps.
That path is unreachable at runtime: after insn 1, we know r0 != 0, but
with the sign extension on the jset, we would only fallthrough insn 2
if r0 == 0. Unfortunately, is_branch_taken() isn't currently able to
figure this out, so the verifier walks all branches. The verifier then
refines the register bounds using the second condition and we end
up with inconsistent bounds on this unreachable path:
1: if r0 == 0 goto <exit>
r0: u64=[0x1, 0xffffffffffffffff] var_off=(0, 0xffffffffffffffff)
2: if r0 & 0xffffffff goto <exit>
r0 before reg_bounds_sync: u64=[0x1, 0xffffffffffffffff] var_off=(0, 0)
r0 after reg_bounds_sync: u64=[0x1, 0] var_off=(0, 0)
Improving the range refinement for JSET to cover all cases is tricky. We
also don't expect many users to rely on JSET given LLVM doesn't generate
those instructions. So instead of improving the range refinement for
JSETs, Eduard suggested we forget the ranges whenever we're narrowing
tnums after a JSET. This patch implements that approach. |
| In the Linux kernel, the following vulnerability has been resolved:
rcutorture: Fix rcutorture_one_extend_check() splat in RT kernels
For built with CONFIG_PREEMPT_RT=y kernels, running rcutorture
tests resulted in the following splat:
[ 68.797425] rcutorture_one_extend_check during change: Current 0x1 To add 0x1 To remove 0x0 preempt_count() 0x0
[ 68.797533] WARNING: CPU: 2 PID: 512 at kernel/rcu/rcutorture.c:1993 rcutorture_one_extend_check+0x419/0x560 [rcutorture]
[ 68.797601] Call Trace:
[ 68.797602] <TASK>
[ 68.797619] ? lockdep_softirqs_off+0xa5/0x160
[ 68.797631] rcutorture_one_extend+0x18e/0xcc0 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797646] ? local_clock+0x19/0x40
[ 68.797659] rcu_torture_one_read+0xf0/0x280 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797678] ? __pfx_rcu_torture_one_read+0x10/0x10 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797804] ? __pfx_rcu_torture_timer+0x10/0x10 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797815] rcu-torture: rcu_torture_reader task started
[ 68.797824] rcu-torture: Creating rcu_torture_reader task
[ 68.797824] rcu_torture_reader+0x238/0x580 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797836] ? kvm_sched_clock_read+0x15/0x30
Disable BH does not change the SOFTIRQ corresponding bits in
preempt_count() for RT kernels, this commit therefore use
softirq_count() to check the if BH is disabled. |
| In the Linux kernel, the following vulnerability has been resolved:
rcu: Fix rcu_read_unlock() deadloop due to IRQ work
During rcu_read_unlock_special(), if this happens during irq_exit(), we
can lockup if an IPI is issued. This is because the IPI itself triggers
the irq_exit() path causing a recursive lock up.
This is precisely what Xiongfeng found when invoking a BPF program on
the trace_tick_stop() tracepoint As shown in the trace below. Fix by
managing the irq_work state correctly.
irq_exit()
__irq_exit_rcu()
/* in_hardirq() returns false after this */
preempt_count_sub(HARDIRQ_OFFSET)
tick_irq_exit()
tick_nohz_irq_exit()
tick_nohz_stop_sched_tick()
trace_tick_stop() /* a bpf prog is hooked on this trace point */
__bpf_trace_tick_stop()
bpf_trace_run2()
rcu_read_unlock_special()
/* will send a IPI to itself */
irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
A simple reproducer can also be obtained by doing the following in
tick_irq_exit(). It will hang on boot without the patch:
static inline void tick_irq_exit(void)
{
+ rcu_read_lock();
+ WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
+ rcu_read_unlock();
+
[neeraj: Apply Frederic's suggested fix for PREEMPT_RT] |