Search

Search Results (332999 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-23188 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net: usb: r8152: fix resume reset deadlock rtl8152 can trigger device reset during reset which potentially can result in a deadlock: **** DPM device timeout after 10 seconds; 15 seconds until panic **** Call Trace: <TASK> schedule+0x483/0x1370 schedule_preempt_disabled+0x15/0x30 __mutex_lock_common+0x1fd/0x470 __rtl8152_set_mac_address+0x80/0x1f0 dev_set_mac_address+0x7f/0x150 rtl8152_post_reset+0x72/0x150 usb_reset_device+0x1d0/0x220 rtl8152_resume+0x99/0xc0 usb_resume_interface+0x3e/0xc0 usb_resume_both+0x104/0x150 usb_resume+0x22/0x110 The problem is that rtl8152 resume calls reset under tp->control mutex while reset basically re-enters rtl8152 and attempts to acquire the same tp->control lock once again. Reset INACCESSIBLE device outside of tp->control mutex scope to avoid recursive mutex_lock() deadlock.
CVE-2026-23187 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: pmdomain: imx8m-blk-ctrl: fix out-of-range access of bc->domains Fix out-of-range access of bc->domains in imx8m_blk_ctrl_remove().
CVE-2026-23186 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: hwmon: (acpi_power_meter) Fix deadlocks related to acpi_power_meter_notify() The acpi_power_meter driver's .notify() callback function, acpi_power_meter_notify(), calls hwmon_device_unregister() under a lock that is also acquired by callbacks in sysfs attributes of the device being unregistered which is prone to deadlocks between sysfs access and device removal. Address this by moving the hwmon device removal in acpi_power_meter_notify() outside the lock in question, but notice that doing it alone is not sufficient because two concurrent METER_NOTIFY_CONFIG notifications may be attempting to remove the same device at the same time. To prevent that from happening, add a new lock serializing the execution of the switch () statement in acpi_power_meter_notify(). For simplicity, it is a static mutex which should not be a problem from the performance perspective. The new lock also allows the hwmon_device_register_with_info() in acpi_power_meter_notify() to be called outside the inner lock because it prevents the other notifications handled by that function from manipulating the "resource" object while the hwmon device based on it is being registered. The sending of ACPI netlink messages from acpi_power_meter_notify() is serialized by the new lock too which generally helps to ensure that the order of handling firmware notifications is the same as the order of sending netlink messages related to them. In addition, notice that hwmon_device_register_with_info() may fail in which case resource->hwmon_dev will become an error pointer, so add checks to avoid attempting to unregister the hwmon device pointer to by it in that case to acpi_power_meter_notify() and acpi_power_meter_remove().
CVE-2026-23185 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mld: cancel mlo_scan_start_wk mlo_scan_start_wk is not canceled on disconnection. In fact, it is not canceled anywhere except in the restart cleanup, where we don't really have to. This can cause an init-after-queue issue: if, for example, the work was queued and then drv_change_interface got executed. This can also cause use-after-free: if the work is executed after the vif is freed.
CVE-2026-23184 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: binder: fix UAF in binder_netlink_report() Oneway transactions sent to frozen targets via binder_proc_transaction() return a BR_TRANSACTION_PENDING_FROZEN error but they are still treated as successful since the target is expected to thaw at some point. It is then not safe to access 't' after BR_TRANSACTION_PENDING_FROZEN errors as the transaction could have been consumed by the now thawed target. This is the case for binder_netlink_report() which derreferences 't' after a pending frozen error, as pointed out by the following KASAN report: ================================================================== BUG: KASAN: slab-use-after-free in binder_netlink_report.isra.0+0x694/0x6c8 Read of size 8 at addr ffff00000f98ba38 by task binder-util/522 CPU: 4 UID: 0 PID: 522 Comm: binder-util Not tainted 6.19.0-rc6-00015-gc03e9c42ae8f #1 PREEMPT Hardware name: linux,dummy-virt (DT) Call trace: binder_netlink_report.isra.0+0x694/0x6c8 binder_transaction+0x66e4/0x79b8 binder_thread_write+0xab4/0x4440 binder_ioctl+0x1fd4/0x2940 [...] Allocated by task 522: __kmalloc_cache_noprof+0x17c/0x50c binder_transaction+0x584/0x79b8 binder_thread_write+0xab4/0x4440 binder_ioctl+0x1fd4/0x2940 [...] Freed by task 488: kfree+0x1d0/0x420 binder_free_transaction+0x150/0x234 binder_thread_read+0x2d08/0x3ce4 binder_ioctl+0x488/0x2940 [...] ================================================================== Instead, make a transaction copy so the data can be safely accessed by binder_netlink_report() after a pending frozen error. While here, add a comment about not using t->buffer in binder_netlink_report().
CVE-2026-23183 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: cgroup/dmem: fix NULL pointer dereference when setting max An issue was triggered: BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 15 UID: 0 PID: 658 Comm: bash Tainted: 6.19.0-rc6-next-2026012 Tainted: [O]=OOT_MODULE Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), RIP: 0010:strcmp+0x10/0x30 RSP: 0018:ffffc900017f7dc0 EFLAGS: 00000246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff888107cd4358 RDX: 0000000019f73907 RSI: ffffffff82cc381a RDI: 0000000000000000 RBP: ffff8881016bef0d R08: 000000006c0e7145 R09: 0000000056c0e714 R10: 0000000000000001 R11: ffff888107cd4358 R12: 0007ffffffffffff R13: ffff888101399200 R14: ffff888100fcb360 R15: 0007ffffffffffff CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000105c79000 CR4: 00000000000006f0 Call Trace: <TASK> dmemcg_limit_write.constprop.0+0x16d/0x390 ? __pfx_set_resource_max+0x10/0x10 kernfs_fop_write_iter+0x14e/0x200 vfs_write+0x367/0x510 ksys_write+0x66/0xe0 do_syscall_64+0x6b/0x390 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f42697e1887 It was trriggered setting max without limitation, the command is like: "echo test/region0 > dmem.max". To fix this issue, add check whether options is valid after parsing the region_name.
CVE-2026-23182 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: spi: tegra: Fix a memory leak in tegra_slink_probe() In tegra_slink_probe(), when platform_get_irq() fails, it directly returns from the function with an error code, which causes a memory leak. Replace it with a goto label to ensure proper cleanup.
CVE-2026-23180 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: dpaa2-switch: add bounds check for if_id in IRQ handler The IRQ handler extracts if_id from the upper 16 bits of the hardware status register and uses it to index into ethsw->ports[] without validation. Since if_id can be any 16-bit value (0-65535) but the ports array is only allocated with sw_attr.num_ifs elements, this can lead to an out-of-bounds read potentially. Add a bounds check before accessing the array, consistent with the existing validation in dpaa2_switch_rx().
CVE-2026-23177 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: mm, shmem: prevent infinite loop on truncate race When truncating a large swap entry, shmem_free_swap() returns 0 when the entry's index doesn't match the given index due to lookup alignment. The failure fallback path checks if the entry crosses the end border and aborts when it happens, so truncate won't erase an unexpected entry or range. But one scenario was ignored. When `index` points to the middle of a large swap entry, and the large swap entry doesn't go across the end border, find_get_entries() will return that large swap entry as the first item in the batch with `indices[0]` equal to `index`. The entry's base index will be smaller than `indices[0]`, so shmem_free_swap() will fail and return 0 due to the "base < index" check. The code will then call shmem_confirm_swap(), get the order, check if it crosses the END boundary (which it doesn't), and retry with the same index. The next iteration will find the same entry again at the same index with same indices, leading to an infinite loop. Fix this by retrying with a round-down index, and abort if the index is smaller than the truncate range.
CVE-2026-23176 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: platform/x86: toshiba_haps: Fix memory leaks in add/remove routines toshiba_haps_add() leaks the haps object allocated by it if it returns an error after allocating that object successfully. toshiba_haps_remove() does not free the object pointed to by toshiba_haps before clearing that pointer, so it becomes unreachable allocated memory. Address these memory leaks by using devm_kzalloc() for allocating the memory in question.
CVE-2026-23175 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net: cpsw: Execute ndo_set_rx_mode callback in a work queue Commit 1767bb2d47b7 ("ipv6: mcast: Don't hold RTNL for IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP.") removed the RTNL lock for IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP operations. However, this change triggered the following call trace on my BeagleBone Black board: WARNING: net/8021q/vlan_core.c:236 at vlan_for_each+0x120/0x124, CPU#0: rpcbind/481 RTNL: assertion failed at net/8021q/vlan_core.c (236) Modules linked in: CPU: 0 UID: 997 PID: 481 Comm: rpcbind Not tainted 6.19.0-rc7-next-20260130-yocto-standard+ #35 PREEMPT Hardware name: Generic AM33XX (Flattened Device Tree) Call trace: unwind_backtrace from show_stack+0x28/0x2c show_stack from dump_stack_lvl+0x30/0x38 dump_stack_lvl from __warn+0xb8/0x11c __warn from warn_slowpath_fmt+0x130/0x194 warn_slowpath_fmt from vlan_for_each+0x120/0x124 vlan_for_each from cpsw_add_mc_addr+0x54/0x98 cpsw_add_mc_addr from __hw_addr_ref_sync_dev+0xc4/0xec __hw_addr_ref_sync_dev from __dev_mc_add+0x78/0x88 __dev_mc_add from igmp6_group_added+0x84/0xec igmp6_group_added from __ipv6_dev_mc_inc+0x1fc/0x2f0 __ipv6_dev_mc_inc from __ipv6_sock_mc_join+0x124/0x1b4 __ipv6_sock_mc_join from do_ipv6_setsockopt+0x84c/0x1168 do_ipv6_setsockopt from ipv6_setsockopt+0x88/0xc8 ipv6_setsockopt from do_sock_setsockopt+0xe8/0x19c do_sock_setsockopt from __sys_setsockopt+0x84/0xac __sys_setsockopt from ret_fast_syscall+0x0/0x54 This trace occurs because vlan_for_each() is called within cpsw_ndo_set_rx_mode(), which expects the RTNL lock to be held. Since modifying vlan_for_each() to operate without the RTNL lock is not straightforward, and because ndo_set_rx_mode() is invoked both with and without the RTNL lock across different code paths, simply adding rtnl_lock() in cpsw_ndo_set_rx_mode() is not a viable solution. To resolve this issue, we opt to execute the actual processing within a work queue, following the approach used by the icssg-prueth driver. Please note: To reproduce this issue, I manually reverted the changes to am335x-bone-common.dtsi from commit c477358e66a3 ("ARM: dts: am335x-bone: switch to new cpsw switch drv") in order to revert to the legacy cpsw driver.
CVE-2026-23174 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: nvme-pci: handle changing device dma map requirements The initial state of dma_needs_unmap may be false, but change to true while mapping the data iterator. Enabling swiotlb is one such case that can change the result. The nvme driver needs to save the mapped dma vectors to be unmapped later, so allocate as needed during iteration rather than assume it was always allocated at the beginning. This fixes a NULL dereference from accessing an uninitialized dma_vecs when the device dma unmapping requirements change mid-iteration.
CVE-2026-23173 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: TC, delete flows only for existing peers When deleting TC steering flows, iterate only over actual devcom peers instead of assuming all possible ports exist. This avoids touching non-existent peers and ensures cleanup is limited to devices the driver is currently connected to. BUG: kernel NULL pointer dereference, address: 0000000000000008 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 133c8a067 P4D 0 Oops: Oops: 0002 [#1] SMP CPU: 19 UID: 0 PID: 2169 Comm: tc Not tainted 6.18.0+ #156 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:mlx5e_tc_del_fdb_peers_flow+0xbe/0x200 [mlx5_core] Code: 00 00 a8 08 74 a8 49 8b 46 18 f6 c4 02 74 9f 4c 8d bf a0 12 00 00 4c 89 ff e8 0e e7 96 e1 49 8b 44 24 08 49 8b 0c 24 4c 89 ff <48> 89 41 08 48 89 08 49 89 2c 24 49 89 5c 24 08 e8 7d ce 96 e1 49 RSP: 0018:ff11000143867528 EFLAGS: 00010246 RAX: 0000000000000000 RBX: dead000000000122 RCX: 0000000000000000 RDX: ff11000143691580 RSI: ff110001026e5000 RDI: ff11000106f3d2a0 RBP: dead000000000100 R08: 00000000000003fd R09: 0000000000000002 R10: ff11000101c75690 R11: ff1100085faea178 R12: ff11000115f0ae78 R13: 0000000000000000 R14: ff11000115f0a800 R15: ff11000106f3d2a0 FS: 00007f35236bf740(0000) GS:ff110008dc809000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 0000000157a01001 CR4: 0000000000373eb0 Call Trace: <TASK> mlx5e_tc_del_flow+0x46/0x270 [mlx5_core] mlx5e_flow_put+0x25/0x50 [mlx5_core] mlx5e_delete_flower+0x2a6/0x3e0 [mlx5_core] tc_setup_cb_reoffload+0x20/0x80 fl_reoffload+0x26f/0x2f0 [cls_flower] ? mlx5e_tc_reoffload_flows_work+0xc0/0xc0 [mlx5_core] ? mlx5e_tc_reoffload_flows_work+0xc0/0xc0 [mlx5_core] tcf_block_playback_offloads+0x9e/0x1c0 tcf_block_unbind+0x7b/0xd0 tcf_block_setup+0x186/0x1d0 tcf_block_offload_cmd.isra.0+0xef/0x130 tcf_block_offload_unbind+0x43/0x70 __tcf_block_put+0x85/0x160 ingress_destroy+0x32/0x110 [sch_ingress] __qdisc_destroy+0x44/0x100 qdisc_graft+0x22b/0x610 tc_get_qdisc+0x183/0x4d0 rtnetlink_rcv_msg+0x2d7/0x3d0 ? rtnl_calcit.isra.0+0x100/0x100 netlink_rcv_skb+0x53/0x100 netlink_unicast+0x249/0x320 ? __alloc_skb+0x102/0x1f0 netlink_sendmsg+0x1e3/0x420 __sock_sendmsg+0x38/0x60 ____sys_sendmsg+0x1ef/0x230 ? copy_msghdr_from_user+0x6c/0xa0 ___sys_sendmsg+0x7f/0xc0 ? ___sys_recvmsg+0x8a/0xc0 ? __sys_sendto+0x119/0x180 __sys_sendmsg+0x61/0xb0 do_syscall_64+0x55/0x640 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f35238bb764 Code: 15 b9 86 0c 00 f7 d8 64 89 02 b8 ff ff ff ff eb bf 0f 1f 44 00 00 f3 0f 1e fa 80 3d e5 08 0d 00 00 74 13 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 4c c3 0f 1f 00 55 48 89 e5 48 83 ec 20 89 55 RSP: 002b:00007ffed4c35638 EFLAGS: 00000202 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 000055a2efcc75e0 RCX: 00007f35238bb764 RDX: 0000000000000000 RSI: 00007ffed4c356a0 RDI: 0000000000000003 RBP: 00007ffed4c35710 R08: 0000000000000010 R09: 00007f3523984b20 R10: 0000000000000004 R11: 0000000000000202 R12: 00007ffed4c35790 R13: 000000006947df8f R14: 000055a2efcc75e0 R15: 00007ffed4c35780
CVE-2026-23172 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net: wwan: t7xx: fix potential skb->frags overflow in RX path When receiving data in the DPMAIF RX path, the t7xx_dpmaif_set_frag_to_skb() function adds page fragments to an skb without checking if the number of fragments has exceeded MAX_SKB_FRAGS. This could lead to a buffer overflow in skb_shinfo(skb)->frags[] array, corrupting adjacent memory and potentially causing kernel crashes or other undefined behavior. This issue was identified through static code analysis by comparing with a similar vulnerability fixed in the mt76 driver commit b102f0c522cf ("mt76: fix array overflow on receiving too many fragments for a packet"). The vulnerability could be triggered if the modem firmware sends packets with excessive fragments. While under normal protocol conditions (MTU 3080 bytes, BAT buffer 3584 bytes), a single packet should not require additional fragments, the kernel should not blindly trust firmware behavior. Malicious, buggy, or compromised firmware could potentially craft packets with more fragments than the kernel expects. Fix this by adding a bounds check before calling skb_add_rx_frag() to ensure nr_frags does not exceed MAX_SKB_FRAGS. The check must be performed before unmapping to avoid a page leak and double DMA unmap during device teardown.
CVE-2026-23171 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: bonding: fix use-after-free due to enslave fail after slave array update Fix a use-after-free which happens due to enslave failure after the new slave has been added to the array. Since the new slave can be used for Tx immediately, we can use it after it has been freed by the enslave error cleanup path which frees the allocated slave memory. Slave update array is supposed to be called last when further enslave failures are not expected. Move it after xdp setup to avoid any problems. It is very easy to reproduce the problem with a simple xdp_pass prog: ip l add bond1 type bond mode balance-xor ip l set bond1 up ip l set dev bond1 xdp object xdp_pass.o sec xdp_pass ip l add dumdum type dummy Then run in parallel: while :; do ip l set dumdum master bond1 1>/dev/null 2>&1; done; mausezahn bond1 -a own -b rand -A rand -B 1.1.1.1 -c 0 -t tcp "dp=1-1023, flags=syn" The crash happens almost immediately: [ 605.602850] Oops: general protection fault, probably for non-canonical address 0xe0e6fc2460000137: 0000 [#1] SMP KASAN NOPTI [ 605.602916] KASAN: maybe wild-memory-access in range [0x07380123000009b8-0x07380123000009bf] [ 605.602946] CPU: 0 UID: 0 PID: 2445 Comm: mausezahn Kdump: loaded Tainted: G B 6.19.0-rc6+ #21 PREEMPT(voluntary) [ 605.602979] Tainted: [B]=BAD_PAGE [ 605.602998] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 605.603032] RIP: 0010:netdev_core_pick_tx+0xcd/0x210 [ 605.603063] Code: 48 89 fa 48 c1 ea 03 80 3c 02 00 0f 85 3e 01 00 00 48 b8 00 00 00 00 00 fc ff df 4c 8b 6b 08 49 8d 7d 30 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 25 01 00 00 49 8b 45 30 4c 89 e2 48 89 ee 48 89 [ 605.603111] RSP: 0018:ffff88817b9af348 EFLAGS: 00010213 [ 605.603145] RAX: dffffc0000000000 RBX: ffff88817d28b420 RCX: 0000000000000000 [ 605.603172] RDX: 00e7002460000137 RSI: 0000000000000008 RDI: 07380123000009be [ 605.603199] RBP: ffff88817b541a00 R08: 0000000000000001 R09: fffffbfff3ed8c0c [ 605.603226] R10: ffffffff9f6c6067 R11: 0000000000000001 R12: 0000000000000000 [ 605.603253] R13: 073801230000098e R14: ffff88817d28b448 R15: ffff88817b541a84 [ 605.603286] FS: 00007f6570ef67c0(0000) GS:ffff888221dfa000(0000) knlGS:0000000000000000 [ 605.603319] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 605.603343] CR2: 00007f65712fae40 CR3: 000000011371b000 CR4: 0000000000350ef0 [ 605.603373] Call Trace: [ 605.603392] <TASK> [ 605.603410] __dev_queue_xmit+0x448/0x32a0 [ 605.603434] ? __pfx_vprintk_emit+0x10/0x10 [ 605.603461] ? __pfx_vprintk_emit+0x10/0x10 [ 605.603484] ? __pfx___dev_queue_xmit+0x10/0x10 [ 605.603507] ? bond_start_xmit+0xbfb/0xc20 [bonding] [ 605.603546] ? _printk+0xcb/0x100 [ 605.603566] ? __pfx__printk+0x10/0x10 [ 605.603589] ? bond_start_xmit+0xbfb/0xc20 [bonding] [ 605.603627] ? add_taint+0x5e/0x70 [ 605.603648] ? add_taint+0x2a/0x70 [ 605.603670] ? end_report.cold+0x51/0x75 [ 605.603693] ? bond_start_xmit+0xbfb/0xc20 [bonding] [ 605.603731] bond_start_xmit+0x623/0xc20 [bonding]
CVE-2026-23170 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/imx/tve: fix probe device leak Make sure to drop the reference taken to the DDC device during probe on probe failure (e.g. probe deferral) and on driver unbind.
CVE-2026-23168 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: flex_proportions: make fprop_new_period() hardirq safe Bernd has reported a lockdep splat from flexible proportions code that is essentially complaining about the following race: <timer fires> run_timer_softirq - we are in softirq context call_timer_fn writeout_period fprop_new_period write_seqcount_begin(&p->sequence); <hardirq is raised> ... blk_mq_end_request() blk_update_request() ext4_end_bio() folio_end_writeback() __wb_writeout_add() __fprop_add_percpu_max() if (unlikely(max_frac < FPROP_FRAC_BASE)) { fprop_fraction_percpu() seq = read_seqcount_begin(&p->sequence); - sees odd sequence so loops indefinitely Note that a deadlock like this is only possible if the bdi has configured maximum fraction of writeout throughput which is very rare in general but frequent for example for FUSE bdis. To fix this problem we have to make sure write section of the sequence counter is irqsafe.
CVE-2026-23167 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: nfc: nci: Fix race between rfkill and nci_unregister_device(). syzbot reported the splat below [0] without a repro. It indicates that struct nci_dev.cmd_wq had been destroyed before nci_close_device() was called via rfkill. nci_dev.cmd_wq is only destroyed in nci_unregister_device(), which (I think) was called from virtual_ncidev_close() when syzbot close()d an fd of virtual_ncidev. The problem is that nci_unregister_device() destroys nci_dev.cmd_wq first and then calls nfc_unregister_device(), which removes the device from rfkill by rfkill_unregister(). So, the device is still visible via rfkill even after nci_dev.cmd_wq is destroyed. Let's unregister the device from rfkill first in nci_unregister_device(). Note that we cannot call nfc_unregister_device() before nci_close_device() because 1) nfc_unregister_device() calls device_del() which frees all memory allocated by devm_kzalloc() and linked to ndev->conn_info_list 2) nci_rx_work() could try to queue nci_conn_info to ndev->conn_info_list which could be leaked Thus, nfc_unregister_device() is split into two functions so we can remove rfkill interfaces only before nci_close_device(). [0]: DEBUG_LOCKS_WARN_ON(1) WARNING: kernel/locking/lockdep.c:238 at hlock_class kernel/locking/lockdep.c:238 [inline], CPU#0: syz.0.8675/6349 WARNING: kernel/locking/lockdep.c:238 at check_wait_context kernel/locking/lockdep.c:4854 [inline], CPU#0: syz.0.8675/6349 WARNING: kernel/locking/lockdep.c:238 at __lock_acquire+0x39d/0x2cf0 kernel/locking/lockdep.c:5187, CPU#0: syz.0.8675/6349 Modules linked in: CPU: 0 UID: 0 PID: 6349 Comm: syz.0.8675 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/13/2026 RIP: 0010:hlock_class kernel/locking/lockdep.c:238 [inline] RIP: 0010:check_wait_context kernel/locking/lockdep.c:4854 [inline] RIP: 0010:__lock_acquire+0x3a4/0x2cf0 kernel/locking/lockdep.c:5187 Code: 18 00 4c 8b 74 24 08 75 27 90 e8 17 f2 fc 02 85 c0 74 1c 83 3d 50 e0 4e 0e 00 75 13 48 8d 3d 43 f7 51 0e 48 c7 c6 8b 3a de 8d <67> 48 0f b9 3a 90 31 c0 0f b6 98 c4 00 00 00 41 8b 45 20 25 ff 1f RSP: 0018:ffffc9000c767680 EFLAGS: 00010046 RAX: 0000000000000001 RBX: 0000000000040000 RCX: 0000000000080000 RDX: ffffc90013080000 RSI: ffffffff8dde3a8b RDI: ffffffff8ff24ca0 RBP: 0000000000000003 R08: ffffffff8fef35a3 R09: 1ffffffff1fde6b4 R10: dffffc0000000000 R11: fffffbfff1fde6b5 R12: 00000000000012a2 R13: ffff888030338ba8 R14: ffff888030338000 R15: ffff888030338b30 FS: 00007fa5995f66c0(0000) GS:ffff8881256f8000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f7e72f842d0 CR3: 00000000485a0000 CR4: 00000000003526f0 Call Trace: <TASK> lock_acquire+0x106/0x330 kernel/locking/lockdep.c:5868 touch_wq_lockdep_map+0xcb/0x180 kernel/workqueue.c:3940 __flush_workqueue+0x14b/0x14f0 kernel/workqueue.c:3982 nci_close_device+0x302/0x630 net/nfc/nci/core.c:567 nci_dev_down+0x3b/0x50 net/nfc/nci/core.c:639 nfc_dev_down+0x152/0x290 net/nfc/core.c:161 nfc_rfkill_set_block+0x2d/0x100 net/nfc/core.c:179 rfkill_set_block+0x1d2/0x440 net/rfkill/core.c:346 rfkill_fop_write+0x461/0x5a0 net/rfkill/core.c:1301 vfs_write+0x29a/0xb90 fs/read_write.c:684 ksys_write+0x150/0x270 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xe2/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fa59b39acb9 Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 e8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007fa5995f6028 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 00007fa59b615fa0 RCX: 00007fa59b39acb9 RDX: 0000000000000008 RSI: 0000200000000080 RDI: 0000000000000007 RBP: 00007fa59b408bf7 R08: ---truncated---
CVE-2026-23166 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ice: Fix NULL pointer dereference in ice_vsi_set_napi_queues Add NULL pointer checks in ice_vsi_set_napi_queues() to prevent crashes during resume from suspend when rings[q_idx]->q_vector is NULL. Tested adaptor: 60:00.0 Ethernet controller [0200]: Intel Corporation Ethernet Controller E810-XXV for SFP [8086:159b] (rev 02) Subsystem: Intel Corporation Ethernet Network Adapter E810-XXV-2 [8086:4003] SR-IOV state: both disabled and enabled can reproduce this issue. kernel version: v6.18 Reproduce steps: Boot up and execute suspend like systemctl suspend or rtcwake. Log: <1>[ 231.443607] BUG: kernel NULL pointer dereference, address: 0000000000000040 <1>[ 231.444052] #PF: supervisor read access in kernel mode <1>[ 231.444484] #PF: error_code(0x0000) - not-present page <6>[ 231.444913] PGD 0 P4D 0 <4>[ 231.445342] Oops: Oops: 0000 [#1] SMP NOPTI <4>[ 231.446635] RIP: 0010:netif_queue_set_napi+0xa/0x170 <4>[ 231.447067] Code: 31 f6 31 ff c3 cc cc cc cc 0f 1f 80 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 00 00 48 85 c9 74 0b <48> 83 79 30 00 0f 84 39 01 00 00 55 41 89 d1 49 89 f8 89 f2 48 89 <4>[ 231.447513] RSP: 0018:ffffcc780fc078c0 EFLAGS: 00010202 <4>[ 231.447961] RAX: ffff8b848ca30400 RBX: ffff8b848caf2028 RCX: 0000000000000010 <4>[ 231.448443] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff8b848dbd4000 <4>[ 231.448896] RBP: ffffcc780fc078e8 R08: 0000000000000000 R09: 0000000000000000 <4>[ 231.449345] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001 <4>[ 231.449817] R13: ffff8b848dbd4000 R14: ffff8b84833390c8 R15: 0000000000000000 <4>[ 231.450265] FS: 00007c7b29e9d740(0000) GS:ffff8b8c068e2000(0000) knlGS:0000000000000000 <4>[ 231.450715] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 <4>[ 231.451179] CR2: 0000000000000040 CR3: 000000030626f004 CR4: 0000000000f72ef0 <4>[ 231.451629] PKRU: 55555554 <4>[ 231.452076] Call Trace: <4>[ 231.452549] <TASK> <4>[ 231.452996] ? ice_vsi_set_napi_queues+0x4d/0x110 [ice] <4>[ 231.453482] ice_resume+0xfd/0x220 [ice] <4>[ 231.453977] ? __pfx_pci_pm_resume+0x10/0x10 <4>[ 231.454425] pci_pm_resume+0x8c/0x140 <4>[ 231.454872] ? __pfx_pci_pm_resume+0x10/0x10 <4>[ 231.455347] dpm_run_callback+0x5f/0x160 <4>[ 231.455796] ? dpm_wait_for_superior+0x107/0x170 <4>[ 231.456244] device_resume+0x177/0x270 <4>[ 231.456708] dpm_resume+0x209/0x2f0 <4>[ 231.457151] dpm_resume_end+0x15/0x30 <4>[ 231.457596] suspend_devices_and_enter+0x1da/0x2b0 <4>[ 231.458054] enter_state+0x10e/0x570 Add defensive checks for both the ring pointer and its q_vector before dereferencing, allowing the system to resume successfully even when q_vectors are unmapped.
CVE-2026-23165 1 Linux 1 Linux Kernel 2026-02-14 N/A
In the Linux kernel, the following vulnerability has been resolved: sfc: fix deadlock in RSS config read Since cited commit, core locks the net_device's rss_lock when handling ethtool -x command, so driver's implementation should not lock it again. Remove the latter.