| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Disable preemption in bpf_perf_event_output
The nesting protection in bpf_perf_event_output relies on disabled
preemption, which is guaranteed for kprobes and tracepoints.
However bpf_perf_event_output can be also called from uprobes context
through bpf_prog_run_array_sleepable function which disables migration,
but keeps preemption enabled.
This can cause task to be preempted by another one inside the nesting
protection and lead eventually to two tasks using same perf_sample_data
buffer and cause crashes like:
kernel tried to execute NX-protected page - exploit attempt? (uid: 0)
BUG: unable to handle page fault for address: ffffffff82be3eea
...
Call Trace:
? __die+0x1f/0x70
? page_fault_oops+0x176/0x4d0
? exc_page_fault+0x132/0x230
? asm_exc_page_fault+0x22/0x30
? perf_output_sample+0x12b/0x910
? perf_event_output+0xd0/0x1d0
? bpf_perf_event_output+0x162/0x1d0
? bpf_prog_c6271286d9a4c938_krava1+0x76/0x87
? __uprobe_perf_func+0x12b/0x540
? uprobe_dispatcher+0x2c4/0x430
? uprobe_notify_resume+0x2da/0xce0
? atomic_notifier_call_chain+0x7b/0x110
? exit_to_user_mode_prepare+0x13e/0x290
? irqentry_exit_to_user_mode+0x5/0x30
? asm_exc_int3+0x35/0x40
Fixing this by disabling preemption in bpf_perf_event_output. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/irdma: Fix data race on CQP completion stats
CQP completion statistics is read lockesly in irdma_wait_event and
irdma_check_cqp_progress while it can be updated in the completion
thread irdma_sc_ccq_get_cqe_info on another CPU as KCSAN reports.
Make completion statistics an atomic variable to reflect coherent updates
to it. This will also avoid load/store tearing logic bug potentially
possible by compiler optimizations.
[77346.170861] BUG: KCSAN: data-race in irdma_handle_cqp_op [irdma] / irdma_sc_ccq_get_cqe_info [irdma]
[77346.171383] write to 0xffff8a3250b108e0 of 8 bytes by task 9544 on cpu 4:
[77346.171483] irdma_sc_ccq_get_cqe_info+0x27a/0x370 [irdma]
[77346.171658] irdma_cqp_ce_handler+0x164/0x270 [irdma]
[77346.171835] cqp_compl_worker+0x1b/0x20 [irdma]
[77346.172009] process_one_work+0x4d1/0xa40
[77346.172024] worker_thread+0x319/0x700
[77346.172037] kthread+0x180/0x1b0
[77346.172054] ret_from_fork+0x22/0x30
[77346.172136] read to 0xffff8a3250b108e0 of 8 bytes by task 9838 on cpu 2:
[77346.172234] irdma_handle_cqp_op+0xf4/0x4b0 [irdma]
[77346.172413] irdma_cqp_aeq_cmd+0x75/0xa0 [irdma]
[77346.172592] irdma_create_aeq+0x390/0x45a [irdma]
[77346.172769] irdma_rt_init_hw.cold+0x212/0x85d [irdma]
[77346.172944] irdma_probe+0x54f/0x620 [irdma]
[77346.173122] auxiliary_bus_probe+0x66/0xa0
[77346.173137] really_probe+0x140/0x540
[77346.173154] __driver_probe_device+0xc7/0x220
[77346.173173] driver_probe_device+0x5f/0x140
[77346.173190] __driver_attach+0xf0/0x2c0
[77346.173208] bus_for_each_dev+0xa8/0xf0
[77346.173225] driver_attach+0x29/0x30
[77346.173240] bus_add_driver+0x29c/0x2f0
[77346.173255] driver_register+0x10f/0x1a0
[77346.173272] __auxiliary_driver_register+0xbc/0x140
[77346.173287] irdma_init_module+0x55/0x1000 [irdma]
[77346.173460] do_one_initcall+0x7d/0x410
[77346.173475] do_init_module+0x81/0x2c0
[77346.173491] load_module+0x1232/0x12c0
[77346.173506] __do_sys_finit_module+0x101/0x180
[77346.173522] __x64_sys_finit_module+0x3c/0x50
[77346.173538] do_syscall_64+0x39/0x90
[77346.173553] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[77346.173634] value changed: 0x0000000000000094 -> 0x0000000000000095 |
| In the Linux kernel, the following vulnerability has been resolved:
serial: 8250_bcm7271: fix leak in `brcmuart_probe`
Smatch reports:
drivers/tty/serial/8250/8250_bcm7271.c:1120 brcmuart_probe() warn:
'baud_mux_clk' from clk_prepare_enable() not released on lines: 1032.
The issue is fixed by using a managed clock. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: avoid referencing uninit memory in ath9k_wmi_ctrl_rx
For the reasons also described in commit b383e8abed41 ("wifi: ath9k: avoid
uninit memory read in ath9k_htc_rx_msg()"), ath9k_htc_rx_msg() should
validate pkt_len before accessing the SKB.
For example, the obtained SKB may have been badly constructed with
pkt_len = 8. In this case, the SKB can only contain a valid htc_frame_hdr
but after being processed in ath9k_htc_rx_msg() and passed to
ath9k_wmi_ctrl_rx() endpoint RX handler, it is expected to have a WMI
command header which should be located inside its data payload.
Implement sanity checking inside ath9k_wmi_ctrl_rx(). Otherwise, uninit
memory can be referenced.
Tested on Qualcomm Atheros Communications AR9271 802.11n .
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: bus: verify partner exists in typec_altmode_attention
Some usb hubs will negotiate DisplayPort Alt mode with the device
but will then negotiate a data role swap after entering the alt
mode. The data role swap causes the device to unregister all alt
modes, however the usb hub will still send Attention messages
even after failing to reregister the Alt Mode. type_altmode_attention
currently does not verify whether or not a device's altmode partner
exists, which results in a NULL pointer error when dereferencing
the typec_altmode and typec_altmode_ops belonging to the altmode
partner.
Verify the presence of a device's altmode partner before sending
the Attention message to the Alt Mode driver. |
| In the Linux kernel, the following vulnerability has been resolved:
thermal: intel: quark_dts: fix error pointer dereference
If alloc_soc_dts() fails, then we can just return. Trying to free
"soc_dts" will lead to an Oops. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: zoned: fix memory leak after finding block group with super blocks
At exclude_super_stripes(), if we happen to find a block group that has
super blocks mapped to it and we are on a zoned filesystem, we error out
as this is not supposed to happen, indicating either a bug or maybe some
memory corruption for example. However we are exiting the function without
freeing the memory allocated for the logical address of the super blocks.
Fix this by freeing the logical address. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: Get source vCPUs from source VM for SEV-ES intrahost migration
Fix a goof where KVM tries to grab source vCPUs from the destination VM
when doing intrahost migration. Grabbing the wrong vCPU not only hoses
the guest, it also crashes the host due to the VMSA pointer being left
NULL.
BUG: unable to handle page fault for address: ffffe38687000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] SMP NOPTI
CPU: 39 PID: 17143 Comm: sev_migrate_tes Tainted: GO 6.5.0-smp--fff2e47e6c3b-next #151
Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 34.28.0 07/10/2023
RIP: 0010:__free_pages+0x15/0xd0
RSP: 0018:ffff923fcf6e3c78 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffe38687000000 RCX: 0000000000000100
RDX: 0000000000000100 RSI: 0000000000000000 RDI: ffffe38687000000
RBP: ffff923fcf6e3c88 R08: ffff923fcafb0000 R09: 0000000000000000
R10: 0000000000000000 R11: ffffffff83619b90 R12: ffff923fa9540000
R13: 0000000000080007 R14: ffff923f6d35d000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff929d0d7c0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffe38687000000 CR3: 0000005224c34005 CR4: 0000000000770ee0
PKRU: 55555554
Call Trace:
<TASK>
sev_free_vcpu+0xcb/0x110 [kvm_amd]
svm_vcpu_free+0x75/0xf0 [kvm_amd]
kvm_arch_vcpu_destroy+0x36/0x140 [kvm]
kvm_destroy_vcpus+0x67/0x100 [kvm]
kvm_arch_destroy_vm+0x161/0x1d0 [kvm]
kvm_put_kvm+0x276/0x560 [kvm]
kvm_vm_release+0x25/0x30 [kvm]
__fput+0x106/0x280
____fput+0x12/0x20
task_work_run+0x86/0xb0
do_exit+0x2e3/0x9c0
do_group_exit+0xb1/0xc0
__x64_sys_exit_group+0x1b/0x20
do_syscall_64+0x41/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
CR2: ffffe38687000000 |
| In the Linux kernel, the following vulnerability has been resolved:
mtd: spi-nor: Fix shift-out-of-bounds in spi_nor_set_erase_type
spi_nor_set_erase_type() was used either to set or to mask out an erase
type. When we used it to mask out an erase type a shift-out-of-bounds
was hit:
UBSAN: shift-out-of-bounds in drivers/mtd/spi-nor/core.c:2237:24
shift exponent 4294967295 is too large for 32-bit type 'int'
The setting of the size_{shift, mask} and of the opcode are unnecessary
when the erase size is zero, as throughout the code just the erase size
is considered to determine whether an erase type is supported or not.
Setting the opcode to 0xFF was wrong too as nobody guarantees that 0xFF
is an unused opcode. Thus when masking out an erase type, just set the
erase size to zero. This will fix the shift-out-of-bounds.
[ta: refine changes, new commit message, fix compilation error] |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid10: fix memleak of md thread
In raid10_run(), if setup_conf() succeed and raid10_run() failed before
setting 'mddev->thread', then in the error path 'conf->thread' is not
freed.
Fix the problem by setting 'mddev->thread' right after setup_conf(). |
| In the Linux kernel, the following vulnerability has been resolved:
bcache: fixup btree_cache_wait list damage
We get a kernel crash about "list_add corruption. next->prev should be
prev (ffff9c801bc01210), but was ffff9c77b688237c.
(next=ffffae586d8afe68)."
crash> struct list_head 0xffff9c801bc01210
struct list_head {
next = 0xffffae586d8afe68,
prev = 0xffffae586d8afe68
}
crash> struct list_head 0xffff9c77b688237c
struct list_head {
next = 0x0,
prev = 0x0
}
crash> struct list_head 0xffffae586d8afe68
struct list_head struct: invalid kernel virtual address: ffffae586d8afe68 type: "gdb_readmem_callback"
Cannot access memory at address 0xffffae586d8afe68
[230469.019492] Call Trace:
[230469.032041] prepare_to_wait+0x8a/0xb0
[230469.044363] ? bch_btree_keys_free+0x6c/0xc0 [escache]
[230469.056533] mca_cannibalize_lock+0x72/0x90 [escache]
[230469.068788] mca_alloc+0x2ae/0x450 [escache]
[230469.080790] bch_btree_node_get+0x136/0x2d0 [escache]
[230469.092681] bch_btree_check_thread+0x1e1/0x260 [escache]
[230469.104382] ? finish_wait+0x80/0x80
[230469.115884] ? bch_btree_check_recurse+0x1a0/0x1a0 [escache]
[230469.127259] kthread+0x112/0x130
[230469.138448] ? kthread_flush_work_fn+0x10/0x10
[230469.149477] ret_from_fork+0x35/0x40
bch_btree_check_thread() and bch_dirty_init_thread() may call
mca_cannibalize() to cannibalize other cached btree nodes. Only one thread
can do it at a time, so the op of other threads will be added to the
btree_cache_wait list.
We must call finish_wait() to remove op from btree_cache_wait before free
it's memory address. Otherwise, the list will be damaged. Also should call
bch_cannibalize_unlock() to release the btree_cache_alloc_lock and wake_up
other waiters. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/irdma: Fix data race on CQP request done
KCSAN detects a data race on cqp_request->request_done memory location
which is accessed locklessly in irdma_handle_cqp_op while being
updated in irdma_cqp_ce_handler.
Annotate lockless intent with READ_ONCE/WRITE_ONCE to avoid any
compiler optimizations like load fusing and/or KCSAN warning.
[222808.417128] BUG: KCSAN: data-race in irdma_cqp_ce_handler [irdma] / irdma_wait_event [irdma]
[222808.417532] write to 0xffff8e44107019dc of 1 bytes by task 29658 on cpu 5:
[222808.417610] irdma_cqp_ce_handler+0x21e/0x270 [irdma]
[222808.417725] cqp_compl_worker+0x1b/0x20 [irdma]
[222808.417827] process_one_work+0x4d1/0xa40
[222808.417835] worker_thread+0x319/0x700
[222808.417842] kthread+0x180/0x1b0
[222808.417852] ret_from_fork+0x22/0x30
[222808.417918] read to 0xffff8e44107019dc of 1 bytes by task 29688 on cpu 1:
[222808.417995] irdma_wait_event+0x1e2/0x2c0 [irdma]
[222808.418099] irdma_handle_cqp_op+0xae/0x170 [irdma]
[222808.418202] irdma_cqp_cq_destroy_cmd+0x70/0x90 [irdma]
[222808.418308] irdma_puda_dele_rsrc+0x46d/0x4d0 [irdma]
[222808.418411] irdma_rt_deinit_hw+0x179/0x1d0 [irdma]
[222808.418514] irdma_ib_dealloc_device+0x11/0x40 [irdma]
[222808.418618] ib_dealloc_device+0x2a/0x120 [ib_core]
[222808.418823] __ib_unregister_device+0xde/0x100 [ib_core]
[222808.418981] ib_unregister_device+0x22/0x40 [ib_core]
[222808.419142] irdma_ib_unregister_device+0x70/0x90 [irdma]
[222808.419248] i40iw_close+0x6f/0xc0 [irdma]
[222808.419352] i40e_client_device_unregister+0x14a/0x180 [i40e]
[222808.419450] i40iw_remove+0x21/0x30 [irdma]
[222808.419554] auxiliary_bus_remove+0x31/0x50
[222808.419563] device_remove+0x69/0xb0
[222808.419572] device_release_driver_internal+0x293/0x360
[222808.419582] driver_detach+0x7c/0xf0
[222808.419592] bus_remove_driver+0x8c/0x150
[222808.419600] driver_unregister+0x45/0x70
[222808.419610] auxiliary_driver_unregister+0x16/0x30
[222808.419618] irdma_exit_module+0x18/0x1e [irdma]
[222808.419733] __do_sys_delete_module.constprop.0+0x1e2/0x310
[222808.419745] __x64_sys_delete_module+0x1b/0x30
[222808.419755] do_syscall_64+0x39/0x90
[222808.419763] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[222808.419829] value changed: 0x01 -> 0x03 |
| In the Linux kernel, the following vulnerability has been resolved:
vduse: fix NULL pointer dereference
vduse_vdpa_set_vq_affinity callback can be called
with NULL value as cpu_mask when deleting the vduse
device.
This patch resets virtqueue's IRQ affinity mask value
to set all CPUs instead of dereferencing NULL cpu_mask.
[ 4760.952149] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 4760.959110] #PF: supervisor read access in kernel mode
[ 4760.964247] #PF: error_code(0x0000) - not-present page
[ 4760.969385] PGD 0 P4D 0
[ 4760.971927] Oops: 0000 [#1] PREEMPT SMP PTI
[ 4760.976112] CPU: 13 PID: 2346 Comm: vdpa Not tainted 6.4.0-rc6+ #4
[ 4760.982291] Hardware name: Dell Inc. PowerEdge R640/0W23H8, BIOS 2.8.1 06/26/2020
[ 4760.989769] RIP: 0010:memcpy_orig+0xc5/0x130
[ 4760.994049] Code: 16 f8 4c 89 07 4c 89 4f 08 4c 89 54 17 f0 4c 89 5c 17 f8 c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 66 90 83 fa 08 72 1b <4c> 8b 06 4c 8b 4c 16 f8 4c 89 07 4c 89 4c 17 f8 c3 cc cc cc cc 66
[ 4761.012793] RSP: 0018:ffffb1d565abb830 EFLAGS: 00010246
[ 4761.018020] RAX: ffff9f4bf6b27898 RBX: ffff9f4be23969c0 RCX: ffff9f4bcadf6400
[ 4761.025152] RDX: 0000000000000008 RSI: 0000000000000000 RDI: ffff9f4bf6b27898
[ 4761.032286] RBP: 0000000000000000 R08: 0000000000000008 R09: 0000000000000000
[ 4761.039416] R10: 0000000000000000 R11: 0000000000000600 R12: 0000000000000000
[ 4761.046549] R13: 0000000000000000 R14: 0000000000000080 R15: ffffb1d565abbb10
[ 4761.053680] FS: 00007f64c2ec2740(0000) GS:ffff9f635f980000(0000) knlGS:0000000000000000
[ 4761.061765] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 4761.067513] CR2: 0000000000000000 CR3: 0000001875270006 CR4: 00000000007706e0
[ 4761.074645] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 4761.081775] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 4761.088909] PKRU: 55555554
[ 4761.091620] Call Trace:
[ 4761.094074] <TASK>
[ 4761.096180] ? __die+0x1f/0x70
[ 4761.099238] ? page_fault_oops+0x171/0x4f0
[ 4761.103340] ? exc_page_fault+0x7b/0x180
[ 4761.107265] ? asm_exc_page_fault+0x22/0x30
[ 4761.111460] ? memcpy_orig+0xc5/0x130
[ 4761.115126] vduse_vdpa_set_vq_affinity+0x3e/0x50 [vduse]
[ 4761.120533] virtnet_clean_affinity.part.0+0x3d/0x90 [virtio_net]
[ 4761.126635] remove_vq_common+0x1a4/0x250 [virtio_net]
[ 4761.131781] virtnet_remove+0x5d/0x70 [virtio_net]
[ 4761.136580] virtio_dev_remove+0x3a/0x90
[ 4761.140509] device_release_driver_internal+0x19b/0x200
[ 4761.145742] bus_remove_device+0xc2/0x130
[ 4761.149755] device_del+0x158/0x3e0
[ 4761.153245] ? kernfs_find_ns+0x35/0xc0
[ 4761.157086] device_unregister+0x13/0x60
[ 4761.161010] unregister_virtio_device+0x11/0x20
[ 4761.165543] device_release_driver_internal+0x19b/0x200
[ 4761.170770] bus_remove_device+0xc2/0x130
[ 4761.174782] device_del+0x158/0x3e0
[ 4761.178276] ? __pfx_vdpa_name_match+0x10/0x10 [vdpa]
[ 4761.183336] device_unregister+0x13/0x60
[ 4761.187260] vdpa_nl_cmd_dev_del_set_doit+0x63/0xe0 [vdpa] |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qedf: Fix NULL dereference in error handling
Smatch reported:
drivers/scsi/qedf/qedf_main.c:3056 qedf_alloc_global_queues()
warn: missing unwind goto?
At this point in the function, nothing has been allocated so we can return
directly. In particular the "qedf->global_queues" have not been allocated
so calling qedf_free_global_queues() will lead to a NULL dereference when
we check if (!gl[i]) and "gl" is NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fortify the spinlock against deadlock by interrupt
In the function ieee80211_tx_dequeue() there is a particular locking
sequence:
begin:
spin_lock(&local->queue_stop_reason_lock);
q_stopped = local->queue_stop_reasons[q];
spin_unlock(&local->queue_stop_reason_lock);
However small the chance (increased by ftracetest), an asynchronous
interrupt can occur in between of spin_lock() and spin_unlock(),
and the interrupt routine will attempt to lock the same
&local->queue_stop_reason_lock again.
This will cause a costly reset of the CPU and the wifi device or an
altogether hang in the single CPU and single core scenario.
The only remaining spin_lock(&local->queue_stop_reason_lock) that
did not disable interrupts was patched, which should prevent any
deadlocks on the same CPU/core and the same wifi device.
This is the probable trace of the deadlock:
kernel: ================================
kernel: WARNING: inconsistent lock state
kernel: 6.3.0-rc6-mt-20230401-00001-gf86822a1170f #4 Tainted: G W
kernel: --------------------------------
kernel: inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage.
kernel: kworker/5:0/25656 [HC0[0]:SC0[0]:HE1:SE1] takes:
kernel: ffff9d6190779478 (&local->queue_stop_reason_lock){+.?.}-{2:2}, at: return_to_handler+0x0/0x40
kernel: {IN-SOFTIRQ-W} state was registered at:
kernel: lock_acquire+0xc7/0x2d0
kernel: _raw_spin_lock+0x36/0x50
kernel: ieee80211_tx_dequeue+0xb4/0x1330 [mac80211]
kernel: iwl_mvm_mac_itxq_xmit+0xae/0x210 [iwlmvm]
kernel: iwl_mvm_mac_wake_tx_queue+0x2d/0xd0 [iwlmvm]
kernel: ieee80211_queue_skb+0x450/0x730 [mac80211]
kernel: __ieee80211_xmit_fast.constprop.66+0x834/0xa50 [mac80211]
kernel: __ieee80211_subif_start_xmit+0x217/0x530 [mac80211]
kernel: ieee80211_subif_start_xmit+0x60/0x580 [mac80211]
kernel: dev_hard_start_xmit+0xb5/0x260
kernel: __dev_queue_xmit+0xdbe/0x1200
kernel: neigh_resolve_output+0x166/0x260
kernel: ip_finish_output2+0x216/0xb80
kernel: __ip_finish_output+0x2a4/0x4d0
kernel: ip_finish_output+0x2d/0xd0
kernel: ip_output+0x82/0x2b0
kernel: ip_local_out+0xec/0x110
kernel: igmpv3_sendpack+0x5c/0x90
kernel: igmp_ifc_timer_expire+0x26e/0x4e0
kernel: call_timer_fn+0xa5/0x230
kernel: run_timer_softirq+0x27f/0x550
kernel: __do_softirq+0xb4/0x3a4
kernel: irq_exit_rcu+0x9b/0xc0
kernel: sysvec_apic_timer_interrupt+0x80/0xa0
kernel: asm_sysvec_apic_timer_interrupt+0x1f/0x30
kernel: _raw_spin_unlock_irqrestore+0x3f/0x70
kernel: free_to_partial_list+0x3d6/0x590
kernel: __slab_free+0x1b7/0x310
kernel: kmem_cache_free+0x52d/0x550
kernel: putname+0x5d/0x70
kernel: do_sys_openat2+0x1d7/0x310
kernel: do_sys_open+0x51/0x80
kernel: __x64_sys_openat+0x24/0x30
kernel: do_syscall_64+0x5c/0x90
kernel: entry_SYSCALL_64_after_hwframe+0x72/0xdc
kernel: irq event stamp: 5120729
kernel: hardirqs last enabled at (5120729): [<ffffffff9d149936>] trace_graph_return+0xd6/0x120
kernel: hardirqs last disabled at (5120728): [<ffffffff9d149950>] trace_graph_return+0xf0/0x120
kernel: softirqs last enabled at (5069900): [<ffffffff9cf65b60>] return_to_handler+0x0/0x40
kernel: softirqs last disabled at (5067555): [<ffffffff9cf65b60>] return_to_handler+0x0/0x40
kernel:
other info that might help us debug this:
kernel: Possible unsafe locking scenario:
kernel: CPU0
kernel: ----
kernel: lock(&local->queue_stop_reason_lock);
kernel: <Interrupt>
kernel: lock(&local->queue_stop_reason_lock);
kernel:
*** DEADLOCK ***
kernel: 8 locks held by kworker/5:0/25656:
kernel: #0: ffff9d618009d138 ((wq_completion)events_freezable){+.+.}-{0:0}, at: process_one_work+0x1ca/0x530
kernel: #1: ffffb1ef4637fe68 ((work_completion)(&local->restart_work)){+.+.}-{0:0}, at: process_one_work+0x1ce/0x530
kernel: #2: ffffffff9f166548 (rtnl_mutex){+.+.}-{3:3}, at: return_to_handler+0x0/0x40
kernel: #3: ffff9d619
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
tty: serial: imx: disable Ageing Timer interrupt request irq
There maybe pending USR interrupt before requesting irq, however
uart_add_one_port has not executed, so there will be kernel panic:
[ 0.795668] Unable to handle kernel NULL pointer dereference at virtual addre
ss 0000000000000080
[ 0.802701] Mem abort info:
[ 0.805367] ESR = 0x0000000096000004
[ 0.808950] EC = 0x25: DABT (current EL), IL = 32 bits
[ 0.814033] SET = 0, FnV = 0
[ 0.816950] EA = 0, S1PTW = 0
[ 0.819950] FSC = 0x04: level 0 translation fault
[ 0.824617] Data abort info:
[ 0.827367] ISV = 0, ISS = 0x00000004
[ 0.831033] CM = 0, WnR = 0
[ 0.833866] [0000000000000080] user address but active_mm is swapper
[ 0.839951] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
[ 0.845953] Modules linked in:
[ 0.848869] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.1.1+g56321e101aca #1
[ 0.855617] Hardware name: Freescale i.MX8MP EVK (DT)
[ 0.860452] pstate: 000000c5 (nzcv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 0.867117] pc : __imx_uart_rxint.constprop.0+0x11c/0x2c0
[ 0.872283] lr : imx_uart_int+0xf8/0x1ec
The issue only happends in the inmate linux when Jailhouse hypervisor
enabled. The test procedure is:
while true; do
jailhouse enable imx8mp.cell
jailhouse cell linux xxxx
sleep 10
jailhouse cell destroy 1
jailhouse disable
sleep 5
done
And during the upper test, press keys to the 2nd linux console.
When `jailhouse cell destroy 1`, the 2nd linux has no chance to put
the uart to a quiese state, so USR1/2 may has pending interrupts. Then
when `jailhosue cell linux xx` to start 2nd linux again, the issue
trigger.
In order to disable irqs before requesting them, both UCR1 and UCR2 irqs
should be disabled, so here fix that, disable the Ageing Timer interrupt
in UCR2 as UCR1 does. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: dvm: Fix memcpy: detected field-spanning write backtrace
A received TKIP key may be up to 32 bytes because it may contain
MIC rx/tx keys too. These are not used by iwl and copying these
over overflows the iwl_keyinfo.key field.
Add a check to not copy more data to iwl_keyinfo.key then will fit.
This fixes backtraces like this one:
memcpy: detected field-spanning write (size 32) of single field "sta_cmd.key.key" at drivers/net/wireless/intel/iwlwifi/dvm/sta.c:1103 (size 16)
WARNING: CPU: 1 PID: 946 at drivers/net/wireless/intel/iwlwifi/dvm/sta.c:1103 iwlagn_send_sta_key+0x375/0x390 [iwldvm]
<snip>
Hardware name: Dell Inc. Latitude E6430/0H3MT5, BIOS A21 05/08/2017
RIP: 0010:iwlagn_send_sta_key+0x375/0x390 [iwldvm]
<snip>
Call Trace:
<TASK>
iwl_set_dynamic_key+0x1f0/0x220 [iwldvm]
iwlagn_mac_set_key+0x1e4/0x280 [iwldvm]
drv_set_key+0xa4/0x1b0 [mac80211]
ieee80211_key_enable_hw_accel+0xa8/0x2d0 [mac80211]
ieee80211_key_replace+0x22d/0x8e0 [mac80211]
<snip> |
| In the Linux kernel, the following vulnerability has been resolved:
iomap: Fix possible overflow condition in iomap_write_delalloc_scan
folio_next_index() returns an unsigned long value which left shifted
by PAGE_SHIFT could possibly cause an overflow on 32-bit system. Instead
use folio_pos(folio) + folio_size(folio), which does this correctly. |
| In the Linux kernel, the following vulnerability has been resolved:
media: av7110: prevent underflow in write_ts_to_decoder()
The buf[4] value comes from the user via ts_play(). It is a value in
the u8 range. The final length we pass to av7110_ipack_instant_repack()
is "len - (buf[4] + 1) - 4" so add a check to ensure that the length is
not negative. It's not clear that passing a negative len value does
anything bad necessarily, but it's not best practice.
With the new bounds checking the "if (!len)" condition is no longer
possible or required so remove that. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Address KCSAN report on bpf_lru_list
KCSAN reported a data-race when accessing node->ref.
Although node->ref does not have to be accurate,
take this chance to use a more common READ_ONCE() and WRITE_ONCE()
pattern instead of data_race().
There is an existing bpf_lru_node_is_ref() and bpf_lru_node_set_ref().
This patch also adds bpf_lru_node_clear_ref() to do the
WRITE_ONCE(node->ref, 0) also.
==================================================================
BUG: KCSAN: data-race in __bpf_lru_list_rotate / __htab_lru_percpu_map_update_elem
write to 0xffff888137038deb of 1 bytes by task 11240 on cpu 1:
__bpf_lru_node_move kernel/bpf/bpf_lru_list.c:113 [inline]
__bpf_lru_list_rotate_active kernel/bpf/bpf_lru_list.c:149 [inline]
__bpf_lru_list_rotate+0x1bf/0x750 kernel/bpf/bpf_lru_list.c:240
bpf_lru_list_pop_free_to_local kernel/bpf/bpf_lru_list.c:329 [inline]
bpf_common_lru_pop_free kernel/bpf/bpf_lru_list.c:447 [inline]
bpf_lru_pop_free+0x638/0xe20 kernel/bpf/bpf_lru_list.c:499
prealloc_lru_pop kernel/bpf/hashtab.c:290 [inline]
__htab_lru_percpu_map_update_elem+0xe7/0x820 kernel/bpf/hashtab.c:1316
bpf_percpu_hash_update+0x5e/0x90 kernel/bpf/hashtab.c:2313
bpf_map_update_value+0x2a9/0x370 kernel/bpf/syscall.c:200
generic_map_update_batch+0x3ae/0x4f0 kernel/bpf/syscall.c:1687
bpf_map_do_batch+0x2d9/0x3d0 kernel/bpf/syscall.c:4534
__sys_bpf+0x338/0x810
__do_sys_bpf kernel/bpf/syscall.c:5096 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5094 [inline]
__x64_sys_bpf+0x43/0x50 kernel/bpf/syscall.c:5094
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
read to 0xffff888137038deb of 1 bytes by task 11241 on cpu 0:
bpf_lru_node_set_ref kernel/bpf/bpf_lru_list.h:70 [inline]
__htab_lru_percpu_map_update_elem+0x2f1/0x820 kernel/bpf/hashtab.c:1332
bpf_percpu_hash_update+0x5e/0x90 kernel/bpf/hashtab.c:2313
bpf_map_update_value+0x2a9/0x370 kernel/bpf/syscall.c:200
generic_map_update_batch+0x3ae/0x4f0 kernel/bpf/syscall.c:1687
bpf_map_do_batch+0x2d9/0x3d0 kernel/bpf/syscall.c:4534
__sys_bpf+0x338/0x810
__do_sys_bpf kernel/bpf/syscall.c:5096 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5094 [inline]
__x64_sys_bpf+0x43/0x50 kernel/bpf/syscall.c:5094
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0x01 -> 0x00
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 11241 Comm: syz-executor.3 Not tainted 6.3.0-rc7-syzkaller-00136-g6a66fdd29ea1 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/30/2023
================================================================== |