| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: fix device leaks on compat bind and unbind
Make sure to drop the reference taken when looking up the idxd device as
part of the compat bind and unbind sysfs interface. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: tegra-adma: Fix use-after-free
A use-after-free bug exists in the Tegra ADMA driver when audio streams
are terminated, particularly during XRUN conditions. The issue occurs
when the DMA buffer is freed by tegra_adma_terminate_all() before the
vchan completion tasklet finishes accessing it.
The race condition follows this sequence:
1. DMA transfer completes, triggering an interrupt that schedules the
completion tasklet (tasklet has not executed yet)
2. Audio playback stops, calling tegra_adma_terminate_all() which
frees the DMA buffer memory via kfree()
3. The scheduled tasklet finally executes, calling vchan_complete()
which attempts to access the already-freed memory
Since tasklets can execute at any time after being scheduled, there is
no guarantee that the buffer will remain valid when vchan_complete()
runs.
Fix this by properly synchronizing the virtual channel completion:
- Calling vchan_terminate_vdesc() in tegra_adma_stop() to mark the
descriptors as terminated instead of freeing the descriptor.
- Add the callback tegra_adma_synchronize() that calls
vchan_synchronize() which kills any pending tasklets and frees any
terminated descriptors.
Crash logs:
[ 337.427523] BUG: KASAN: use-after-free in vchan_complete+0x124/0x3b0
[ 337.427544] Read of size 8 at addr ffff000132055428 by task swapper/0/0
[ 337.427562] Call trace:
[ 337.427564] dump_backtrace+0x0/0x320
[ 337.427571] show_stack+0x20/0x30
[ 337.427575] dump_stack_lvl+0x68/0x84
[ 337.427584] print_address_description.constprop.0+0x74/0x2b8
[ 337.427590] kasan_report+0x1f4/0x210
[ 337.427598] __asan_load8+0xa0/0xd0
[ 337.427603] vchan_complete+0x124/0x3b0
[ 337.427609] tasklet_action_common.constprop.0+0x190/0x1d0
[ 337.427617] tasklet_action+0x30/0x40
[ 337.427623] __do_softirq+0x1a0/0x5c4
[ 337.427628] irq_exit+0x110/0x140
[ 337.427633] handle_domain_irq+0xa4/0xe0
[ 337.427640] gic_handle_irq+0x64/0x160
[ 337.427644] call_on_irq_stack+0x20/0x4c
[ 337.427649] do_interrupt_handler+0x7c/0x90
[ 337.427654] el1_interrupt+0x30/0x80
[ 337.427659] el1h_64_irq_handler+0x18/0x30
[ 337.427663] el1h_64_irq+0x7c/0x80
[ 337.427667] cpuidle_enter_state+0xe4/0x540
[ 337.427674] cpuidle_enter+0x54/0x80
[ 337.427679] do_idle+0x2e0/0x380
[ 337.427685] cpu_startup_entry+0x2c/0x70
[ 337.427690] rest_init+0x114/0x130
[ 337.427695] arch_call_rest_init+0x18/0x24
[ 337.427702] start_kernel+0x380/0x3b4
[ 337.427706] __primary_switched+0xc0/0xc8 |
| In the Linux kernel, the following vulnerability has been resolved:
accel/ivpu: Fix race condition when unbinding BOs
Fix 'Memory manager not clean during takedown' warning that occurs
when ivpu_gem_bo_free() removes the BO from the BOs list before it
gets unmapped. Then file_priv_unbind() triggers a warning in
drm_mm_takedown() during context teardown.
Protect the unmapping sequence with bo_list_lock to ensure the BO is
always fully unmapped when removed from the list. This ensures the BO
is either fully unmapped at context teardown time or present on the
list and unmapped by file_priv_unbind(). |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Do not let BPF test infra emit invalid GSO types to stack
Yinhao et al. reported that their fuzzer tool was able to trigger a
skb_warn_bad_offload() from netif_skb_features() -> gso_features_check().
When a BPF program - triggered via BPF test infra - pushes the packet
to the loopback device via bpf_clone_redirect() then mentioned offload
warning can be seen. GSO-related features are then rightfully disabled.
We get into this situation due to convert___skb_to_skb() setting
gso_segs and gso_size but not gso_type. Technically, it makes sense
that this warning triggers since the GSO properties are malformed due
to the gso_type. Potentially, the gso_type could be marked non-trustworthy
through setting it at least to SKB_GSO_DODGY without any other specific
assumptions, but that also feels wrong given we should not go further
into the GSO engine in the first place.
The checks were added in 121d57af308d ("gso: validate gso_type in GSO
handlers") because there were malicious (syzbot) senders that combine
a protocol with a non-matching gso_type. If we would want to drop such
packets, gso_features_check() currently only returns feature flags via
netif_skb_features(), so one location for potentially dropping such skbs
could be validate_xmit_unreadable_skb(), but then otoh it would be
an additional check in the fast-path for a very corner case. Given
bpf_clone_redirect() is the only place where BPF test infra could emit
such packets, lets reject them right there. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Initialize allocated memory before use
KMSAN reports: Multiple uninitialized values detected:
- KMSAN: uninit-value in ntfs_read_hdr (3)
- KMSAN: uninit-value in bcmp (3)
Memory is allocated by __getname(), which is a wrapper for
kmem_cache_alloc(). This memory is used before being properly
cleared. Change kmem_cache_alloc() to kmem_cache_zalloc() to
properly allocate and clear memory before use. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix racy bitfield write in btrfs_clear_space_info_full()
From the memory-barriers.txt document regarding memory barrier ordering
guarantees:
(*) These guarantees do not apply to bitfields, because compilers often
generate code to modify these using non-atomic read-modify-write
sequences. Do not attempt to use bitfields to synchronize parallel
algorithms.
(*) Even in cases where bitfields are protected by locks, all fields
in a given bitfield must be protected by one lock. If two fields
in a given bitfield are protected by different locks, the compiler's
non-atomic read-modify-write sequences can cause an update to one
field to corrupt the value of an adjacent field.
btrfs_space_info has a bitfield sharing an underlying word consisting of
the fields full, chunk_alloc, and flush:
struct btrfs_space_info {
struct btrfs_fs_info * fs_info; /* 0 8 */
struct btrfs_space_info * parent; /* 8 8 */
...
int clamp; /* 172 4 */
unsigned int full:1; /* 176: 0 4 */
unsigned int chunk_alloc:1; /* 176: 1 4 */
unsigned int flush:1; /* 176: 2 4 */
...
Therefore, to be safe from parallel read-modify-writes losing a write to
one of the bitfield members protected by a lock, all writes to all the
bitfields must use the lock. They almost universally do, except for
btrfs_clear_space_info_full() which iterates over the space_infos and
writes out found->full = 0 without a lock.
Imagine that we have one thread completing a transaction in which we
finished deleting a block_group and are thus calling
btrfs_clear_space_info_full() while simultaneously the data reclaim
ticket infrastructure is running do_async_reclaim_data_space():
T1 T2
btrfs_commit_transaction
btrfs_clear_space_info_full
data_sinfo->full = 0
READ: full:0, chunk_alloc:0, flush:1
do_async_reclaim_data_space(data_sinfo)
spin_lock(&space_info->lock);
if(list_empty(tickets))
space_info->flush = 0;
READ: full: 0, chunk_alloc:0, flush:1
MOD/WRITE: full: 0, chunk_alloc:0, flush:0
spin_unlock(&space_info->lock);
return;
MOD/WRITE: full:0, chunk_alloc:0, flush:1
and now data_sinfo->flush is 1 but the reclaim worker has exited. This
breaks the invariant that flush is 0 iff there is no work queued or
running. Once this invariant is violated, future allocations that go
into __reserve_bytes() will add tickets to space_info->tickets but will
see space_info->flush is set to 1 and not queue the work. After this,
they will block forever on the resulting ticket, as it is now impossible
to kick the worker again.
I also confirmed by looking at the assembly of the affected kernel that
it is doing RMW operations. For example, to set the flush (3rd) bit to 0,
the assembly is:
andb $0xfb,0x60(%rbx)
and similarly for setting the full (1st) bit to 0:
andb $0xfe,-0x20(%rax)
So I think this is really a bug on practical systems. I have observed
a number of systems in this exact state, but am currently unable to
reproduce it.
Rather than leaving this footgun lying around for the future, take
advantage of the fact that there is room in the struct anyway, and that
it is already quite large and simply change the three bitfield members to
bools. This avoids writes to space_info->full having any effect on
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix refcount leak in exfat_find
Fix refcount leaks in `exfat_find` related to `exfat_get_dentry_set`.
Function `exfat_get_dentry_set` would increase the reference counter of
`es->bh` on success. Therefore, `exfat_put_dentry_set` must be called
after `exfat_get_dentry_set` to ensure refcount consistency. This patch
relocate two checks to avoid possible leaks. |
| SiYuan is a personal knowledge management system. In versions prior to 3.5.4, the markdown feature allows unrestricted server side html-rendering which allows arbitrary file read (LFD). Version 3.5.4 fixes the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
sched_ext: Fix possible deadlock in the deferred_irq_workfn()
For PREEMPT_RT=y kernels, the deferred_irq_workfn() is executed in
the per-cpu irq_work/* task context and not disable-irq, if the rq
returned by container_of() is current CPU's rq, the following scenarios
may occur:
lock(&rq->__lock);
<Interrupt>
lock(&rq->__lock);
This commit use IRQ_WORK_INIT_HARD() to replace init_irq_work() to
initialize rq->scx.deferred_irq_work, make the deferred_irq_workfn()
is always invoked in hard-irq context. |
| In the Linux kernel, the following vulnerability has been resolved:
usbnet: Fix using smp_processor_id() in preemptible code warnings
Syzbot reported the following warning:
BUG: using smp_processor_id() in preemptible [00000000] code: dhcpcd/2879
caller is usbnet_skb_return+0x74/0x490 drivers/net/usb/usbnet.c:331
CPU: 1 UID: 0 PID: 2879 Comm: dhcpcd Not tainted 6.15.0-rc4-syzkaller-00098-g615dca38c2ea #0 PREEMPT(voluntary)
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x16c/0x1f0 lib/dump_stack.c:120
check_preemption_disabled+0xd0/0xe0 lib/smp_processor_id.c:49
usbnet_skb_return+0x74/0x490 drivers/net/usb/usbnet.c:331
usbnet_resume_rx+0x4b/0x170 drivers/net/usb/usbnet.c:708
usbnet_change_mtu+0x1be/0x220 drivers/net/usb/usbnet.c:417
__dev_set_mtu net/core/dev.c:9443 [inline]
netif_set_mtu_ext+0x369/0x5c0 net/core/dev.c:9496
netif_set_mtu+0xb0/0x160 net/core/dev.c:9520
dev_set_mtu+0xae/0x170 net/core/dev_api.c:247
dev_ifsioc+0xa31/0x18d0 net/core/dev_ioctl.c:572
dev_ioctl+0x223/0x10e0 net/core/dev_ioctl.c:821
sock_do_ioctl+0x19d/0x280 net/socket.c:1204
sock_ioctl+0x42f/0x6a0 net/socket.c:1311
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:906 [inline]
__se_sys_ioctl fs/ioctl.c:892 [inline]
__x64_sys_ioctl+0x190/0x200 fs/ioctl.c:892
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x260 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
For historical and portability reasons, the netif_rx() is usually
run in the softirq or interrupt context, this commit therefore add
local_bh_disable/enable() protection in the usbnet_resume_rx(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Check dce_hwseq before dereferencing it
[WHAT]
hws was checked for null earlier in dce110_blank_stream, indicating hws
can be null, and should be checked whenever it is used.
(cherry picked from commit 79db43611ff61280b6de58ce1305e0b2ecf675ad) |
| In the Linux kernel, the following vulnerability has been resolved:
bridge: mcast: Fix use-after-free during router port configuration
The bridge maintains a global list of ports behind which a multicast
router resides. The list is consulted during forwarding to ensure
multicast packets are forwarded to these ports even if the ports are not
member in the matching MDB entry.
When per-VLAN multicast snooping is enabled, the per-port multicast
context is disabled on each port and the port is removed from the global
router port list:
# ip link add name br1 up type bridge vlan_filtering 1 mcast_snooping 1
# ip link add name dummy1 up master br1 type dummy
# ip link set dev dummy1 type bridge_slave mcast_router 2
$ bridge -d mdb show | grep router
router ports on br1: dummy1
# ip link set dev br1 type bridge mcast_vlan_snooping 1
$ bridge -d mdb show | grep router
However, the port can be re-added to the global list even when per-VLAN
multicast snooping is enabled:
# ip link set dev dummy1 type bridge_slave mcast_router 0
# ip link set dev dummy1 type bridge_slave mcast_router 2
$ bridge -d mdb show | grep router
router ports on br1: dummy1
Since commit 4b30ae9adb04 ("net: bridge: mcast: re-implement
br_multicast_{enable, disable}_port functions"), when per-VLAN multicast
snooping is enabled, multicast disablement on a port will disable the
per-{port, VLAN} multicast contexts and not the per-port one. As a
result, a port will remain in the global router port list even after it
is deleted. This will lead to a use-after-free [1] when the list is
traversed (when adding a new port to the list, for example):
# ip link del dev dummy1
# ip link add name dummy2 up master br1 type dummy
# ip link set dev dummy2 type bridge_slave mcast_router 2
Similarly, stale entries can also be found in the per-VLAN router port
list. When per-VLAN multicast snooping is disabled, the per-{port, VLAN}
contexts are disabled on each port and the port is removed from the
per-VLAN router port list:
# ip link add name br1 up type bridge vlan_filtering 1 mcast_snooping 1 mcast_vlan_snooping 1
# ip link add name dummy1 up master br1 type dummy
# bridge vlan add vid 2 dev dummy1
# bridge vlan global set vid 2 dev br1 mcast_snooping 1
# bridge vlan set vid 2 dev dummy1 mcast_router 2
$ bridge vlan global show dev br1 vid 2 | grep router
router ports: dummy1
# ip link set dev br1 type bridge mcast_vlan_snooping 0
$ bridge vlan global show dev br1 vid 2 | grep router
However, the port can be re-added to the per-VLAN list even when
per-VLAN multicast snooping is disabled:
# bridge vlan set vid 2 dev dummy1 mcast_router 0
# bridge vlan set vid 2 dev dummy1 mcast_router 2
$ bridge vlan global show dev br1 vid 2 | grep router
router ports: dummy1
When the VLAN is deleted from the port, the per-{port, VLAN} multicast
context will not be disabled since multicast snooping is not enabled
on the VLAN. As a result, the port will remain in the per-VLAN router
port list even after it is no longer member in the VLAN. This will lead
to a use-after-free [2] when the list is traversed (when adding a new
port to the list, for example):
# ip link add name dummy2 up master br1 type dummy
# bridge vlan add vid 2 dev dummy2
# bridge vlan del vid 2 dev dummy1
# bridge vlan set vid 2 dev dummy2 mcast_router 2
Fix these issues by removing the port from the relevant (global or
per-VLAN) router port list in br_multicast_port_ctx_deinit(). The
function is invoked during port deletion with the per-port multicast
context and during VLAN deletion with the per-{port, VLAN} multicast
context.
Note that deleting the multicast router timer is not enough as it only
takes care of the temporary multicast router states (1 or 3) and not the
permanent one (2).
[1]
BUG: KASAN: slab-out-of-bounds in br_multicast_add_router.part.0+0x3f1/0x560
Write of size 8 at addr ffff888004a67328 by task ip/384
[...]
Call Trace:
<TASK>
dump_stack
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: fix race between nfsd registration and exports_proc
As of now nfsd calls create_proc_exports_entry() at start of init_nfsd
and cleanup by remove_proc_entry() at last of exit_nfsd.
Which causes kernel OOPs if there is race between below 2 operations:
(i) exportfs -r
(ii) mount -t nfsd none /proc/fs/nfsd
for 5.4 kernel ARM64:
CPU 1:
el1_irq+0xbc/0x180
arch_counter_get_cntvct+0x14/0x18
running_clock+0xc/0x18
preempt_count_add+0x88/0x110
prep_new_page+0xb0/0x220
get_page_from_freelist+0x2d8/0x1778
__alloc_pages_nodemask+0x15c/0xef0
__vmalloc_node_range+0x28c/0x478
__vmalloc_node_flags_caller+0x8c/0xb0
kvmalloc_node+0x88/0xe0
nfsd_init_net+0x6c/0x108 [nfsd]
ops_init+0x44/0x170
register_pernet_operations+0x114/0x270
register_pernet_subsys+0x34/0x50
init_nfsd+0xa8/0x718 [nfsd]
do_one_initcall+0x54/0x2e0
CPU 2 :
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
PC is at : exports_net_open+0x50/0x68 [nfsd]
Call trace:
exports_net_open+0x50/0x68 [nfsd]
exports_proc_open+0x2c/0x38 [nfsd]
proc_reg_open+0xb8/0x198
do_dentry_open+0x1c4/0x418
vfs_open+0x38/0x48
path_openat+0x28c/0xf18
do_filp_open+0x70/0xe8
do_sys_open+0x154/0x248
Sometimes it crashes at exports_net_open() and sometimes cache_seq_next_rcu().
and same is happening on latest 6.14 kernel as well:
[ 0.000000] Linux version 6.14.0-rc5-next-20250304-dirty
...
[ 285.455918] Unable to handle kernel paging request at virtual address 00001f4800001f48
...
[ 285.464902] pc : cache_seq_next_rcu+0x78/0xa4
...
[ 285.469695] Call trace:
[ 285.470083] cache_seq_next_rcu+0x78/0xa4 (P)
[ 285.470488] seq_read+0xe0/0x11c
[ 285.470675] proc_reg_read+0x9c/0xf0
[ 285.470874] vfs_read+0xc4/0x2fc
[ 285.471057] ksys_read+0x6c/0xf4
[ 285.471231] __arm64_sys_read+0x1c/0x28
[ 285.471428] invoke_syscall+0x44/0x100
[ 285.471633] el0_svc_common.constprop.0+0x40/0xe0
[ 285.471870] do_el0_svc_compat+0x1c/0x34
[ 285.472073] el0_svc_compat+0x2c/0x80
[ 285.472265] el0t_32_sync_handler+0x90/0x140
[ 285.472473] el0t_32_sync+0x19c/0x1a0
[ 285.472887] Code: f9400885 93407c23 937d7c27 11000421 (f86378a3)
[ 285.473422] ---[ end trace 0000000000000000 ]---
It reproduced simply with below script:
while [ 1 ]
do
/exportfs -r
done &
while [ 1 ]
do
insmod /nfsd.ko
mount -t nfsd none /proc/fs/nfsd
umount /proc/fs/nfsd
rmmod nfsd
done &
So exporting interfaces to user space shall be done at last and
cleanup at first place.
With change there is no Kernel OOPs. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: csa unmap use uninterruptible lock
After process exit to unmap csa and free GPU vm, if signal is accepted
and then waiting to take vm lock is interrupted and return, it causes
memory leaking and below warning backtrace.
Change to use uninterruptible wait lock fix the issue.
WARNING: CPU: 69 PID: 167800 at amd/amdgpu/amdgpu_kms.c:1525
amdgpu_driver_postclose_kms+0x294/0x2a0 [amdgpu]
Call Trace:
<TASK>
drm_file_free.part.0+0x1da/0x230 [drm]
drm_close_helper.isra.0+0x65/0x70 [drm]
drm_release+0x6a/0x120 [drm]
amdgpu_drm_release+0x51/0x60 [amdgpu]
__fput+0x9f/0x280
____fput+0xe/0x20
task_work_run+0x67/0xa0
do_exit+0x217/0x3c0
do_group_exit+0x3b/0xb0
get_signal+0x14a/0x8d0
arch_do_signal_or_restart+0xde/0x100
exit_to_user_mode_loop+0xc1/0x1a0
exit_to_user_mode_prepare+0xf4/0x100
syscall_exit_to_user_mode+0x17/0x40
do_syscall_64+0x69/0xc0
(cherry picked from commit 7dbbfb3c171a6f63b01165958629c9c26abf38ab) |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: allow MDIO bus PM ops to start/stop state machine for phylink-controlled PHY
DSA has 2 kinds of drivers:
1. Those who call dsa_switch_suspend() and dsa_switch_resume() from
their device PM ops: qca8k-8xxx, bcm_sf2, microchip ksz
2. Those who don't: all others. The above methods should be optional.
For type 1, dsa_switch_suspend() calls dsa_user_suspend() -> phylink_stop(),
and dsa_switch_resume() calls dsa_user_resume() -> phylink_start().
These seem good candidates for setting mac_managed_pm = true because
that is essentially its definition [1], but that does not seem to be the
biggest problem for now, and is not what this change focuses on.
Talking strictly about the 2nd category of DSA drivers here (which
do not have MAC managed PM, meaning that for their attached PHYs,
mdio_bus_phy_suspend() and mdio_bus_phy_resume() should run in full),
I have noticed that the following warning from mdio_bus_phy_resume() is
triggered:
WARN_ON(phydev->state != PHY_HALTED && phydev->state != PHY_READY &&
phydev->state != PHY_UP);
because the PHY state machine is running.
It's running as a result of a previous dsa_user_open() -> ... ->
phylink_start() -> phy_start() having been initiated by the user.
The previous mdio_bus_phy_suspend() was supposed to have called
phy_stop_machine(), but it didn't. So this is why the PHY is in state
PHY_NOLINK by the time mdio_bus_phy_resume() runs.
mdio_bus_phy_suspend() did not call phy_stop_machine() because for
phylink, the phydev->adjust_link function pointer is NULL. This seems a
technicality introduced by commit fddd91016d16 ("phylib: fix PAL state
machine restart on resume"). That commit was written before phylink
existed, and was intended to avoid crashing with consumer drivers which
don't use the PHY state machine - phylink always does, when using a PHY.
But phylink itself has historically not been developed with
suspend/resume in mind, and apparently not tested too much in that
scenario, allowing this bug to exist unnoticed for so long. Plus, prior
to the WARN_ON(), it would have likely been invisible.
This issue is not in fact restricted to type 2 DSA drivers (according to
the above ad-hoc classification), but can be extrapolated to any MAC
driver with phylink and MDIO-bus-managed PHY PM ops. DSA is just where
the issue was reported. Assuming mac_managed_pm is set correctly, a
quick search indicates the following other drivers might be affected:
$ grep -Zlr PHYLINK_NETDEV drivers/ | xargs -0 grep -L mac_managed_pm
drivers/net/ethernet/atheros/ag71xx.c
drivers/net/ethernet/microchip/sparx5/sparx5_main.c
drivers/net/ethernet/microchip/lan966x/lan966x_main.c
drivers/net/ethernet/freescale/dpaa2/dpaa2-mac.c
drivers/net/ethernet/freescale/fs_enet/fs_enet-main.c
drivers/net/ethernet/freescale/dpaa/dpaa_eth.c
drivers/net/ethernet/freescale/ucc_geth.c
drivers/net/ethernet/freescale/enetc/enetc_pf_common.c
drivers/net/ethernet/marvell/mvpp2/mvpp2_main.c
drivers/net/ethernet/marvell/mvneta.c
drivers/net/ethernet/marvell/prestera/prestera_main.c
drivers/net/ethernet/mediatek/mtk_eth_soc.c
drivers/net/ethernet/altera/altera_tse_main.c
drivers/net/ethernet/wangxun/txgbe/txgbe_phy.c
drivers/net/ethernet/meta/fbnic/fbnic_phylink.c
drivers/net/ethernet/tehuti/tn40_phy.c
drivers/net/ethernet/mscc/ocelot_net.c
Make the existing conditions dependent on the PHY device having a
phydev->phy_link_change() implementation equal to the default
phy_link_change() provided by phylib. Otherwise, we implicitly know that
the phydev has the phylink-provided phylink_phy_change() callback, and
when phylink is used, the PHY state machine always needs to be stopped/
started on the suspend/resume path. The code is structured as such that
if phydev->phy_link_change() is absent, it is a matter of time until the
kernel will crash - no need to further complicate the test.
Thus, for the situation where the PM is not managed b
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix use-after-free in ksmbd_session_rpc_open
A UAF issue can occur due to a race condition between
ksmbd_session_rpc_open() and __session_rpc_close().
Add rpc_lock to the session to protect it. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix RCU stall while reaping monitor destination ring
While processing the monitor destination ring, MSDUs are reaped from the
link descriptor based on the corresponding buf_id.
However, sometimes the driver cannot obtain a valid buffer corresponding
to the buf_id received from the hardware. This causes an infinite loop
in the destination processing, resulting in a kernel crash.
kernel log:
ath11k_pci 0000:58:00.0: data msdu_pop: invalid buf_id 309
ath11k_pci 0000:58:00.0: data dp_rx_monitor_link_desc_return failed
ath11k_pci 0000:58:00.0: data msdu_pop: invalid buf_id 309
ath11k_pci 0000:58:00.0: data dp_rx_monitor_link_desc_return failed
Fix this by skipping the problematic buf_id and reaping the next entry,
replacing the break with the next MSDU processing.
Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.30
Tested-on: QCN9074 hw1.0 PCI WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
Fix memory leak in posix_clock_open()
If the clk ops.open() function returns an error, we don't release the
pccontext we allocated for this clock.
Re-organize the code slightly to make it all more obvious. |
| AimOne Video Converter 2.04 Build 103 contains a buffer overflow vulnerability in its registration form that causes application crashes. Attackers can generate a 7000-byte payload to trigger the denial of service and potentially exploit the software's registration mechanism. |
| Ametys CMS v4.4.1 contains a persistent cross-site scripting vulnerability in the link directory's input fields for external links. Attackers can inject malicious script code in link text and descriptions to execute persistent attacks that compromise user sessions and manipulate application modules. |