Search

Search Results (328367 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-71075 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: aic94xx: fix use-after-free in device removal path The asd_pci_remove() function fails to synchronize with pending tasklets before freeing the asd_ha structure, leading to a potential use-after-free vulnerability. When a device removal is triggered (via hot-unplug or module unload), race condition can occur. The fix adds tasklet_kill() before freeing the asd_ha structure, ensuring all scheduled tasklets complete before cleanup proceeds.
CVE-2025-71069 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: invalidate dentry cache on failed whiteout creation F2FS can mount filesystems with corrupted directory depth values that get runtime-clamped to MAX_DIR_HASH_DEPTH. When RENAME_WHITEOUT operations are performed on such directories, f2fs_rename performs directory modifications (updating target entry and deleting source entry) before attempting to add the whiteout entry via f2fs_add_link. If f2fs_add_link fails due to the corrupted directory structure, the function returns an error to VFS, but the partial directory modifications have already been committed to disk. VFS assumes the entire rename operation failed and does not update the dentry cache, leaving stale mappings. In the error path, VFS does not call d_move() to update the dentry cache. This results in new_dentry still pointing to the old inode (new_inode) which has already had its i_nlink decremented to zero. The stale cache causes subsequent operations to incorrectly reference the freed inode. This causes subsequent operations to use cached dentry information that no longer matches the on-disk state. When a second rename targets the same entry, VFS attempts to decrement i_nlink on the stale inode, which may already have i_nlink=0, triggering a WARNING in drop_nlink(). Example sequence: 1. First rename (RENAME_WHITEOUT): file2 → file1 - f2fs updates file1 entry on disk (points to inode 8) - f2fs deletes file2 entry on disk - f2fs_add_link(whiteout) fails (corrupted directory) - Returns error to VFS - VFS does not call d_move() due to error - VFS cache still has: file1 → inode 7 (stale!) - inode 7 has i_nlink=0 (already decremented) 2. Second rename: file3 → file1 - VFS uses stale cache: file1 → inode 7 - Tries to drop_nlink on inode 7 (i_nlink already 0) - WARNING in drop_nlink() Fix this by explicitly invalidating old_dentry and new_dentry when f2fs_add_link fails during whiteout creation. This forces VFS to refresh from disk on subsequent operations, ensuring cache consistency even when the rename partially succeeds. Reproducer: 1. Mount F2FS image with corrupted i_current_depth 2. renameat2(file2, file1, RENAME_WHITEOUT) 3. renameat2(file3, file1, 0) 4. System triggers WARNING in drop_nlink()
CVE-2025-71068 1 Linux 1 Linux Kernel 2026-01-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: svcrdma: bound check rq_pages index in inline path svc_rdma_copy_inline_range indexed rqstp->rq_pages[rc_curpage] without verifying rc_curpage stays within the allocated page array. Add guards before the first use and after advancing to a new page.
CVE-2025-71066 1 Linux 1 Linux Kernel 2026-01-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/sched: ets: Always remove class from active list before deleting in ets_qdisc_change zdi-disclosures@trendmicro.com says: The vulnerability is a race condition between `ets_qdisc_dequeue` and `ets_qdisc_change`. It leads to UAF on `struct Qdisc` object. Attacker requires the capability to create new user and network namespace in order to trigger the bug. See my additional commentary at the end of the analysis. Analysis: static int ets_qdisc_change(struct Qdisc *sch, struct nlattr *opt, struct netlink_ext_ack *extack) { ... // (1) this lock is preventing .change handler (`ets_qdisc_change`) //to race with .dequeue handler (`ets_qdisc_dequeue`) sch_tree_lock(sch); for (i = nbands; i < oldbands; i++) { if (i >= q->nstrict && q->classes[i].qdisc->q.qlen) list_del_init(&q->classes[i].alist); qdisc_purge_queue(q->classes[i].qdisc); } WRITE_ONCE(q->nbands, nbands); for (i = nstrict; i < q->nstrict; i++) { if (q->classes[i].qdisc->q.qlen) { // (2) the class is added to the q->active list_add_tail(&q->classes[i].alist, &q->active); q->classes[i].deficit = quanta[i]; } } WRITE_ONCE(q->nstrict, nstrict); memcpy(q->prio2band, priomap, sizeof(priomap)); for (i = 0; i < q->nbands; i++) WRITE_ONCE(q->classes[i].quantum, quanta[i]); for (i = oldbands; i < q->nbands; i++) { q->classes[i].qdisc = queues[i]; if (q->classes[i].qdisc != &noop_qdisc) qdisc_hash_add(q->classes[i].qdisc, true); } // (3) the qdisc is unlocked, now dequeue can be called in parallel // to the rest of .change handler sch_tree_unlock(sch); ets_offload_change(sch); for (i = q->nbands; i < oldbands; i++) { // (4) we're reducing the refcount for our class's qdisc and // freeing it qdisc_put(q->classes[i].qdisc); // (5) If we call .dequeue between (4) and (5), we will have // a strong UAF and we can control RIP q->classes[i].qdisc = NULL; WRITE_ONCE(q->classes[i].quantum, 0); q->classes[i].deficit = 0; gnet_stats_basic_sync_init(&q->classes[i].bstats); memset(&q->classes[i].qstats, 0, sizeof(q->classes[i].qstats)); } return 0; } Comment: This happens because some of the classes have their qdiscs assigned to NULL, but remain in the active list. This commit fixes this issue by always removing the class from the active list before deleting and freeing its associated qdisc Reproducer Steps (trimmed version of what was sent by zdi-disclosures@trendmicro.com) ``` DEV="${DEV:-lo}" ROOT_HANDLE="${ROOT_HANDLE:-1:}" BAND2_HANDLE="${BAND2_HANDLE:-20:}" # child under 1:2 PING_BYTES="${PING_BYTES:-48}" PING_COUNT="${PING_COUNT:-200000}" PING_DST="${PING_DST:-127.0.0.1}" SLOW_TBF_RATE="${SLOW_TBF_RATE:-8bit}" SLOW_TBF_BURST="${SLOW_TBF_BURST:-100b}" SLOW_TBF_LAT="${SLOW_TBF_LAT:-1s}" cleanup() { tc qdisc del dev "$DEV" root 2>/dev/null } trap cleanup EXIT ip link set "$DEV" up tc qdisc del dev "$DEV" root 2>/dev/null || true tc qdisc add dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 2 tc qdisc add dev "$DEV" parent 1:2 handle "$BAND2_HANDLE" \ tbf rate "$SLOW_TBF_RATE" burst "$SLOW_TBF_BURST" latency "$SLOW_TBF_LAT" tc filter add dev "$DEV" parent 1: protocol all prio 1 u32 match u32 0 0 flowid 1:2 tc -s qdisc ls dev $DEV ping -I "$DEV" -f -c "$PING_COUNT" -s "$PING_BYTES" -W 0.001 "$PING_DST" \ >/dev/null 2>&1 & tc qdisc change dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 0 tc qdisc change dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 2 tc -s qdisc ls dev $DEV tc qdisc del dev "$DEV" parent ---truncated---
CVE-2025-71064 1 Linux 1 Linux Kernel 2026-01-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: hns3: using the num_tqps in the vf driver to apply for resources Currently, hdev->htqp is allocated using hdev->num_tqps, and kinfo->tqp is allocated using kinfo->num_tqps. However, kinfo->num_tqps is set to min(new_tqps, hdev->num_tqps); Therefore, kinfo->num_tqps may be smaller than hdev->num_tqps, which causes some hdev->htqp[i] to remain uninitialized in hclgevf_knic_setup(). Thus, this patch allocates hdev->htqp and kinfo->tqp using hdev->num_tqps, ensuring that the lengths of hdev->htqp and kinfo->tqp are consistent and that all elements are properly initialized.
CVE-2025-68821 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fuse: fix readahead reclaim deadlock Commit e26ee4efbc79 ("fuse: allocate ff->release_args only if release is needed") skips allocating ff->release_args if the server does not implement open. However in doing so, fuse_prepare_release() now skips grabbing the reference on the inode, which makes it possible for an inode to be evicted from the dcache while there are inflight readahead requests. This causes a deadlock if the server triggers reclaim while servicing the readahead request and reclaim attempts to evict the inode of the file being read ahead. Since the folio is locked during readahead, when reclaim evicts the fuse inode and fuse_evict_inode() attempts to remove all folios associated with the inode from the page cache (truncate_inode_pages_range()), reclaim will block forever waiting for the lock since readahead cannot relinquish the lock because it is itself blocked in reclaim: >>> stack_trace(1504735) folio_wait_bit_common (mm/filemap.c:1308:4) folio_lock (./include/linux/pagemap.h:1052:3) truncate_inode_pages_range (mm/truncate.c:336:10) fuse_evict_inode (fs/fuse/inode.c:161:2) evict (fs/inode.c:704:3) dentry_unlink_inode (fs/dcache.c:412:3) __dentry_kill (fs/dcache.c:615:3) shrink_kill (fs/dcache.c:1060:12) shrink_dentry_list (fs/dcache.c:1087:3) prune_dcache_sb (fs/dcache.c:1168:2) super_cache_scan (fs/super.c:221:10) do_shrink_slab (mm/shrinker.c:435:9) shrink_slab (mm/shrinker.c:626:10) shrink_node (mm/vmscan.c:5951:2) shrink_zones (mm/vmscan.c:6195:3) do_try_to_free_pages (mm/vmscan.c:6257:3) do_swap_page (mm/memory.c:4136:11) handle_pte_fault (mm/memory.c:5562:10) handle_mm_fault (mm/memory.c:5870:9) do_user_addr_fault (arch/x86/mm/fault.c:1338:10) handle_page_fault (arch/x86/mm/fault.c:1481:3) exc_page_fault (arch/x86/mm/fault.c:1539:2) asm_exc_page_fault+0x22/0x27 Fix this deadlock by allocating ff->release_args and grabbing the reference on the inode when preparing the file for release even if the server does not implement open. The inode reference will be dropped when the last reference on the fuse file is dropped (see fuse_file_put() -> fuse_release_end()).
CVE-2025-68820 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ext4: xattr: fix null pointer deref in ext4_raw_inode() If ext4_get_inode_loc() fails (e.g. if it returns -EFSCORRUPTED), iloc.bh will remain set to NULL. Since ext4_xattr_inode_dec_ref_all() lacks error checking, this will lead to a null pointer dereference in ext4_raw_inode(), called right after ext4_get_inode_loc(). Found by Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2025-68819 1 Linux 1 Linux Kernel 2026-01-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: media: dvb-usb: dtv5100: fix out-of-bounds in dtv5100_i2c_msg() rlen value is a user-controlled value, but dtv5100_i2c_msg() does not check the size of the rlen value. Therefore, if it is set to a value larger than sizeof(st->data), an out-of-bounds vuln occurs for st->data. Therefore, we need to add proper range checking to prevent this vuln.
CVE-2025-68818 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: Revert "scsi: qla2xxx: Perform lockless command completion in abort path" This reverts commit 0367076b0817d5c75dfb83001ce7ce5c64d803a9. The commit being reverted added code to __qla2x00_abort_all_cmds() to call sp->done() without holding a spinlock. But unlike the older code below it, this new code failed to check sp->cmd_type and just assumed TYPE_SRB, which results in a jump to an invalid pointer in target-mode with TYPE_TGT_CMD: qla2xxx [0000:65:00.0]-d034:8: qla24xx_do_nack_work create sess success 0000000009f7a79b qla2xxx [0000:65:00.0]-5003:8: ISP System Error - mbx1=1ff5h mbx2=10h mbx3=0h mbx4=0h mbx5=191h mbx6=0h mbx7=0h. qla2xxx [0000:65:00.0]-d01e:8: -> fwdump no buffer qla2xxx [0000:65:00.0]-f03a:8: qla_target(0): System error async event 0x8002 occurred qla2xxx [0000:65:00.0]-00af:8: Performing ISP error recovery - ha=0000000058183fda. BUG: kernel NULL pointer dereference, address: 0000000000000000 PF: supervisor instruction fetch in kernel mode PF: error_code(0x0010) - not-present page PGD 0 P4D 0 Oops: 0010 [#1] SMP CPU: 2 PID: 9446 Comm: qla2xxx_8_dpc Tainted: G O 6.1.133 #1 Hardware name: Supermicro Super Server/X11SPL-F, BIOS 4.2 12/15/2023 RIP: 0010:0x0 Code: Unable to access opcode bytes at 0xffffffffffffffd6. RSP: 0018:ffffc90001f93dc8 EFLAGS: 00010206 RAX: 0000000000000282 RBX: 0000000000000355 RCX: ffff88810d16a000 RDX: ffff88810dbadaa8 RSI: 0000000000080000 RDI: ffff888169dc38c0 RBP: ffff888169dc38c0 R08: 0000000000000001 R09: 0000000000000045 R10: ffffffffa034bdf0 R11: 0000000000000000 R12: ffff88810800bb40 R13: 0000000000001aa8 R14: ffff888100136610 R15: ffff8881070f7400 FS: 0000000000000000(0000) GS:ffff88bf80080000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffffffffffffd6 CR3: 000000010c8ff006 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? __die+0x4d/0x8b ? page_fault_oops+0x91/0x180 ? trace_buffer_unlock_commit_regs+0x38/0x1a0 ? exc_page_fault+0x391/0x5e0 ? asm_exc_page_fault+0x22/0x30 __qla2x00_abort_all_cmds+0xcb/0x3e0 [qla2xxx_scst] qla2x00_abort_all_cmds+0x50/0x70 [qla2xxx_scst] qla2x00_abort_isp_cleanup+0x3b7/0x4b0 [qla2xxx_scst] qla2x00_abort_isp+0xfd/0x860 [qla2xxx_scst] qla2x00_do_dpc+0x581/0xa40 [qla2xxx_scst] kthread+0xa8/0xd0 </TASK> Then commit 4475afa2646d ("scsi: qla2xxx: Complete command early within lock") added the spinlock back, because not having the lock caused a race and a crash. But qla2x00_abort_srb() in the switch below already checks for qla2x00_chip_is_down() and handles it the same way, so the code above the switch is now redundant and still buggy in target-mode. Remove it.
CVE-2025-68816 1 Linux 1 Linux Kernel 2026-01-19 5.6 Medium
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: fw_tracer, Validate format string parameters Add validation for format string parameters in the firmware tracer to prevent potential security vulnerabilities and crashes from malformed format strings received from firmware. The firmware tracer receives format strings from the device firmware and uses them to format trace messages. Without proper validation, bad firmware could provide format strings with invalid format specifiers (e.g., %s, %p, %n) that could lead to crashes, or other undefined behavior. Add mlx5_tracer_validate_params() to validate that all format specifiers in trace strings are limited to safe integer/hex formats (%x, %d, %i, %u, %llx, %lx, etc.). Reject strings containing other format types that could be used to access arbitrary memory or cause crashes. Invalid format strings are added to the trace output for visibility with "BAD_FORMAT: " prefix.
CVE-2025-68815 1 Linux 1 Linux Kernel 2026-01-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/sched: ets: Remove drr class from the active list if it changes to strict Whenever a user issues an ets qdisc change command, transforming a drr class into a strict one, the ets code isn't checking whether that class was in the active list and removing it. This means that, if a user changes a strict class (which was in the active list) back to a drr one, that class will be added twice to the active list [1]. Doing so with the following commands: tc qdisc add dev lo root handle 1: ets bands 2 strict 1 tc qdisc add dev lo parent 1:2 handle 20: \ tbf rate 8bit burst 100b latency 1s tc filter add dev lo parent 1: basic classid 1:2 ping -c1 -W0.01 -s 56 127.0.0.1 tc qdisc change dev lo root handle 1: ets bands 2 strict 2 tc qdisc change dev lo root handle 1: ets bands 2 strict 1 ping -c1 -W0.01 -s 56 127.0.0.1 Will trigger the following splat with list debug turned on: [ 59.279014][ T365] ------------[ cut here ]------------ [ 59.279452][ T365] list_add double add: new=ffff88801d60e350, prev=ffff88801d60e350, next=ffff88801d60e2c0. [ 59.280153][ T365] WARNING: CPU: 3 PID: 365 at lib/list_debug.c:35 __list_add_valid_or_report+0x17f/0x220 [ 59.280860][ T365] Modules linked in: [ 59.281165][ T365] CPU: 3 UID: 0 PID: 365 Comm: tc Not tainted 6.18.0-rc7-00105-g7e9f13163c13-dirty #239 PREEMPT(voluntary) [ 59.281977][ T365] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 [ 59.282391][ T365] RIP: 0010:__list_add_valid_or_report+0x17f/0x220 [ 59.282842][ T365] Code: 89 c6 e8 d4 b7 0d ff 90 0f 0b 90 90 31 c0 e9 31 ff ff ff 90 48 c7 c7 e0 a0 22 9f 48 89 f2 48 89 c1 4c 89 c6 e8 b2 b7 0d ff 90 <0f> 0b 90 90 31 c0 e9 0f ff ff ff 48 89 f7 48 89 44 24 10 4c 89 44 ... [ 59.288812][ T365] Call Trace: [ 59.289056][ T365] <TASK> [ 59.289224][ T365] ? srso_alias_return_thunk+0x5/0xfbef5 [ 59.289546][ T365] ets_qdisc_change+0xd2b/0x1e80 [ 59.289891][ T365] ? __lock_acquire+0x7e7/0x1be0 [ 59.290223][ T365] ? __pfx_ets_qdisc_change+0x10/0x10 [ 59.290546][ T365] ? srso_alias_return_thunk+0x5/0xfbef5 [ 59.290898][ T365] ? __mutex_trylock_common+0xda/0x240 [ 59.291228][ T365] ? __pfx___mutex_trylock_common+0x10/0x10 [ 59.291655][ T365] ? srso_alias_return_thunk+0x5/0xfbef5 [ 59.291993][ T365] ? srso_alias_return_thunk+0x5/0xfbef5 [ 59.292313][ T365] ? trace_contention_end+0xc8/0x110 [ 59.292656][ T365] ? srso_alias_return_thunk+0x5/0xfbef5 [ 59.293022][ T365] ? srso_alias_return_thunk+0x5/0xfbef5 [ 59.293351][ T365] tc_modify_qdisc+0x63a/0x1cf0 Fix this by always checking and removing an ets class from the active list when changing it to strict. [1] https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net.git/tree/net/sched/sch_ets.c?id=ce052b9402e461a9aded599f5b47e76bc727f7de#n663
CVE-2025-68814 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: io_uring: fix filename leak in __io_openat_prep() __io_openat_prep() allocates a struct filename using getname(). However, for the condition of the file being installed in the fixed file table as well as having O_CLOEXEC flag set, the function returns early. At that point, the request doesn't have REQ_F_NEED_CLEANUP flag set. Due to this, the memory for the newly allocated struct filename is not cleaned up, causing a memory leak. Fix this by setting the REQ_F_NEED_CLEANUP for the request just after the successful getname() call, so that when the request is torn down, the filename will be cleaned up, along with other resources needing cleanup.
CVE-2025-68813 1 Linux 1 Linux Kernel 2026-01-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ipvs: fix ipv4 null-ptr-deref in route error path The IPv4 code path in __ip_vs_get_out_rt() calls dst_link_failure() without ensuring skb->dev is set, leading to a NULL pointer dereference in fib_compute_spec_dst() when ipv4_link_failure() attempts to send ICMP destination unreachable messages. The issue emerged after commit ed0de45a1008 ("ipv4: recompile ip options in ipv4_link_failure") started calling __ip_options_compile() from ipv4_link_failure(). This code path eventually calls fib_compute_spec_dst() which dereferences skb->dev. An attempt was made to fix the NULL skb->dev dereference in commit 0113d9c9d1cc ("ipv4: fix null-deref in ipv4_link_failure"), but it only addressed the immediate dev_net(skb->dev) dereference by using a fallback device. The fix was incomplete because fib_compute_spec_dst() later in the call chain still accesses skb->dev directly, which remains NULL when IPVS calls dst_link_failure(). The crash occurs when: 1. IPVS processes a packet in NAT mode with a misconfigured destination 2. Route lookup fails in __ip_vs_get_out_rt() before establishing a route 3. The error path calls dst_link_failure(skb) with skb->dev == NULL 4. ipv4_link_failure() → ipv4_send_dest_unreach() → __ip_options_compile() → fib_compute_spec_dst() 5. fib_compute_spec_dst() dereferences NULL skb->dev Apply the same fix used for IPv6 in commit 326bf17ea5d4 ("ipvs: fix ipv6 route unreach panic"): set skb->dev from skb_dst(skb)->dev before calling dst_link_failure(). KASAN: null-ptr-deref in range [0x0000000000000328-0x000000000000032f] CPU: 1 PID: 12732 Comm: syz.1.3469 Not tainted 6.6.114 #2 RIP: 0010:__in_dev_get_rcu include/linux/inetdevice.h:233 RIP: 0010:fib_compute_spec_dst+0x17a/0x9f0 net/ipv4/fib_frontend.c:285 Call Trace: <TASK> spec_dst_fill net/ipv4/ip_options.c:232 spec_dst_fill net/ipv4/ip_options.c:229 __ip_options_compile+0x13a1/0x17d0 net/ipv4/ip_options.c:330 ipv4_send_dest_unreach net/ipv4/route.c:1252 ipv4_link_failure+0x702/0xb80 net/ipv4/route.c:1265 dst_link_failure include/net/dst.h:437 __ip_vs_get_out_rt+0x15fd/0x19e0 net/netfilter/ipvs/ip_vs_xmit.c:412 ip_vs_nat_xmit+0x1d8/0xc80 net/netfilter/ipvs/ip_vs_xmit.c:764
CVE-2025-68808 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: media: vidtv: initialize local pointers upon transfer of memory ownership vidtv_channel_si_init() creates a temporary list (program, service, event) and ownership of the memory itself is transferred to the PAT/SDT/EIT tables through vidtv_psi_pat_program_assign(), vidtv_psi_sdt_service_assign(), vidtv_psi_eit_event_assign(). The problem here is that the local pointer where the memory ownership transfer was completed is not initialized to NULL. This causes the vidtv_psi_pmt_create_sec_for_each_pat_entry() function to fail, and in the flow that jumps to free_eit, the memory that was freed by vidtv_psi_*_table_destroy() can be accessed again by vidtv_psi_*_event_destroy() due to the uninitialized local pointer, so it is freed once again. Therefore, to prevent use-after-free and double-free vulnerability, local pointers must be initialized to NULL when transferring memory ownership.
CVE-2025-68804 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: platform/chrome: cros_ec_ishtp: Fix UAF after unbinding driver After unbinding the driver, another kthread `cros_ec_console_log_work` is still accessing the device, resulting an UAF and crash. The driver doesn't unregister the EC device in .remove() which should shutdown sub-devices synchronously. Fix it.
CVE-2025-68803 1 Linux 1 Linux Kernel 2026-01-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: NFSD: NFSv4 file creation neglects setting ACL An NFSv4 client that sets an ACL with a named principal during file creation retrieves the ACL afterwards, and finds that it is only a default ACL (based on the mode bits) and not the ACL that was requested during file creation. This violates RFC 8881 section 6.4.1.3: "the ACL attribute is set as given". The issue occurs in nfsd_create_setattr(), which calls nfsd_attrs_valid() to determine whether to call nfsd_setattr(). However, nfsd_attrs_valid() checks only for iattr changes and security labels, but not POSIX ACLs. When only an ACL is present, the function returns false, nfsd_setattr() is skipped, and the POSIX ACL is never applied to the inode. Subsequently, when the client retrieves the ACL, the server finds no POSIX ACL on the inode and returns one generated from the file's mode bits rather than returning the originally-specified ACL.
CVE-2025-68801 1 Linux 1 Linux Kernel 2026-01-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_router: Fix neighbour use-after-free We sometimes observe use-after-free when dereferencing a neighbour [1]. The problem seems to be that the driver stores a pointer to the neighbour, but without holding a reference on it. A reference is only taken when the neighbour is used by a nexthop. Fix by simplifying the reference counting scheme. Always take a reference when storing a neighbour pointer in a neighbour entry. Avoid taking a referencing when the neighbour is used by a nexthop as the neighbour entry associated with the nexthop already holds a reference. Tested by running the test that uncovered the problem over 300 times. Without this patch the problem was reproduced after a handful of iterations. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_neigh_entry_update+0x2d4/0x310 Read of size 8 at addr ffff88817f8e3420 by task ip/3929 CPU: 3 UID: 0 PID: 3929 Comm: ip Not tainted 6.18.0-rc4-virtme-g36b21a067510 #3 PREEMPT(full) Hardware name: Nvidia SN5600/VMOD0013, BIOS 5.13 05/31/2023 Call Trace: <TASK> dump_stack_lvl+0x6f/0xa0 print_address_description.constprop.0+0x6e/0x300 print_report+0xfc/0x1fb kasan_report+0xe4/0x110 mlxsw_sp_neigh_entry_update+0x2d4/0x310 mlxsw_sp_router_rif_gone_sync+0x35f/0x510 mlxsw_sp_rif_destroy+0x1ea/0x730 mlxsw_sp_inetaddr_port_vlan_event+0xa1/0x1b0 __mlxsw_sp_inetaddr_lag_event+0xcc/0x130 __mlxsw_sp_inetaddr_event+0xf5/0x3c0 mlxsw_sp_router_netdevice_event+0x1015/0x1580 notifier_call_chain+0xcc/0x150 call_netdevice_notifiers_info+0x7e/0x100 __netdev_upper_dev_unlink+0x10b/0x210 netdev_upper_dev_unlink+0x79/0xa0 vrf_del_slave+0x18/0x50 do_set_master+0x146/0x7d0 do_setlink.isra.0+0x9a0/0x2880 rtnl_newlink+0x637/0xb20 rtnetlink_rcv_msg+0x6fe/0xb90 netlink_rcv_skb+0x123/0x380 netlink_unicast+0x4a3/0x770 netlink_sendmsg+0x75b/0xc90 __sock_sendmsg+0xbe/0x160 ____sys_sendmsg+0x5b2/0x7d0 ___sys_sendmsg+0xfd/0x180 __sys_sendmsg+0x124/0x1c0 do_syscall_64+0xbb/0xfd0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 [...] Allocated by task 109: kasan_save_stack+0x30/0x50 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x7b/0x90 __kmalloc_noprof+0x2c1/0x790 neigh_alloc+0x6af/0x8f0 ___neigh_create+0x63/0xe90 mlxsw_sp_nexthop_neigh_init+0x430/0x7e0 mlxsw_sp_nexthop_type_init+0x212/0x960 mlxsw_sp_nexthop6_group_info_init.constprop.0+0x81f/0x1280 mlxsw_sp_nexthop6_group_get+0x392/0x6a0 mlxsw_sp_fib6_entry_create+0x46a/0xfd0 mlxsw_sp_router_fib6_replace+0x1ed/0x5f0 mlxsw_sp_router_fib6_event_work+0x10a/0x2a0 process_one_work+0xd57/0x1390 worker_thread+0x4d6/0xd40 kthread+0x355/0x5b0 ret_from_fork+0x1d4/0x270 ret_from_fork_asm+0x11/0x20 Freed by task 154: kasan_save_stack+0x30/0x50 kasan_save_track+0x14/0x30 __kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x43/0x70 kmem_cache_free_bulk.part.0+0x1eb/0x5e0 kvfree_rcu_bulk+0x1f2/0x260 kfree_rcu_work+0x130/0x1b0 process_one_work+0xd57/0x1390 worker_thread+0x4d6/0xd40 kthread+0x355/0x5b0 ret_from_fork+0x1d4/0x270 ret_from_fork_asm+0x11/0x20 Last potentially related work creation: kasan_save_stack+0x30/0x50 kasan_record_aux_stack+0x8c/0xa0 kvfree_call_rcu+0x93/0x5b0 mlxsw_sp_router_neigh_event_work+0x67d/0x860 process_one_work+0xd57/0x1390 worker_thread+0x4d6/0xd40 kthread+0x355/0x5b0 ret_from_fork+0x1d4/0x270 ret_from_fork_asm+0x11/0x20
CVE-2025-68800 1 Linux 1 Linux Kernel 2026-01-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_mr: Fix use-after-free when updating multicast route stats Cited commit added a dedicated mutex (instead of RTNL) to protect the multicast route list, so that it will not change while the driver periodically traverses it in order to update the kernel about multicast route stats that were queried from the device. One instance of list entry deletion (during route replace) was missed and it can result in a use-after-free [1]. Fix by acquiring the mutex before deleting the entry from the list and releasing it afterwards. [1] BUG: KASAN: slab-use-after-free in mlxsw_sp_mr_stats_update+0x4a5/0x540 drivers/net/ethernet/mellanox/mlxsw/spectrum_mr.c:1006 [mlxsw_spectrum] Read of size 8 at addr ffff8881523c2fa8 by task kworker/2:5/22043 CPU: 2 UID: 0 PID: 22043 Comm: kworker/2:5 Not tainted 6.18.0-rc1-custom-g1a3d6d7cd014 #1 PREEMPT(full) Hardware name: Mellanox Technologies Ltd. MSN2010/SA002610, BIOS 5.6.5 08/24/2017 Workqueue: mlxsw_core mlxsw_sp_mr_stats_update [mlxsw_spectrum] Call Trace: <TASK> dump_stack_lvl+0xba/0x110 print_report+0x174/0x4f5 kasan_report+0xdf/0x110 mlxsw_sp_mr_stats_update+0x4a5/0x540 drivers/net/ethernet/mellanox/mlxsw/spectrum_mr.c:1006 [mlxsw_spectrum] process_one_work+0x9cc/0x18e0 worker_thread+0x5df/0xe40 kthread+0x3b8/0x730 ret_from_fork+0x3e9/0x560 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 29933: kasan_save_stack+0x30/0x50 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 mlxsw_sp_mr_route_add+0xd8/0x4770 [mlxsw_spectrum] mlxsw_sp_router_fibmr_event_work+0x371/0xad0 drivers/net/ethernet/mellanox/mlxsw/spectrum_router.c:7965 [mlxsw_spectrum] process_one_work+0x9cc/0x18e0 worker_thread+0x5df/0xe40 kthread+0x3b8/0x730 ret_from_fork+0x3e9/0x560 ret_from_fork_asm+0x1a/0x30 Freed by task 29933: kasan_save_stack+0x30/0x50 kasan_save_track+0x14/0x30 __kasan_save_free_info+0x3b/0x70 __kasan_slab_free+0x43/0x70 kfree+0x14e/0x700 mlxsw_sp_mr_route_add+0x2dea/0x4770 drivers/net/ethernet/mellanox/mlxsw/spectrum_mr.c:444 [mlxsw_spectrum] mlxsw_sp_router_fibmr_event_work+0x371/0xad0 drivers/net/ethernet/mellanox/mlxsw/spectrum_router.c:7965 [mlxsw_spectrum] process_one_work+0x9cc/0x18e0 worker_thread+0x5df/0xe40 kthread+0x3b8/0x730 ret_from_fork+0x3e9/0x560 ret_from_fork_asm+0x1a/0x30
CVE-2025-68799 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: caif: fix integer underflow in cffrml_receive() The cffrml_receive() function extracts a length field from the packet header and, when FCS is disabled, subtracts 2 from this length without validating that len >= 2. If an attacker sends a malicious packet with a length field of 0 or 1 to an interface with FCS disabled, the subtraction causes an integer underflow. This can lead to memory exhaustion and kernel instability, potential information disclosure if padding contains uninitialized kernel memory. Fix this by validating that len >= 2 before performing the subtraction.
CVE-2025-68797 1 Linux 1 Linux Kernel 2026-01-19 N/A
In the Linux kernel, the following vulnerability has been resolved: char: applicom: fix NULL pointer dereference in ac_ioctl Discovered by Atuin - Automated Vulnerability Discovery Engine. In ac_ioctl, the validation of IndexCard and the check for a valid RamIO pointer are skipped when cmd is 6. However, the function unconditionally executes readb(apbs[IndexCard].RamIO + VERS) at the end. If cmd is 6, IndexCard may reference a board that does not exist (where RamIO is NULL), leading to a NULL pointer dereference. Fix this by skipping the readb access when cmd is 6, as this command is a global information query and does not target a specific board context.