| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The SSL protocol 3.0, as used in OpenSSL through 1.0.1i and other products, uses nondeterministic CBC padding, which makes it easier for man-in-the-middle attackers to obtain cleartext data via a padding-oracle attack, aka the "POODLE" issue. |
| The ssl3_get_key_exchange function in ssl/s3_clnt.c in OpenSSL 1.0.2 before 1.0.2e allows remote servers to cause a denial of service (segmentation fault) via a zero p value in an anonymous Diffie-Hellman (DH) ServerKeyExchange message. |
| Use-after-free vulnerability in the d2i_ECPrivateKey function in crypto/ec/ec_asn1.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a might allow remote attackers to cause a denial of service (memory corruption and application crash) or possibly have unspecified other impact via a malformed Elliptic Curve (EC) private-key file that is improperly handled during import. |
| Memory leak in the tls_decrypt_ticket function in t1_lib.c in OpenSSL before 0.9.8zc, 1.0.0 before 1.0.0o, and 1.0.1 before 1.0.1j allows remote attackers to cause a denial of service (memory consumption) via a crafted session ticket that triggers an integrity-check failure. |
| The certificate parser in OpenSSL before 1.0.1u and 1.0.2 before 1.0.2i might allow remote attackers to cause a denial of service (out-of-bounds read) via crafted certificate operations, related to s3_clnt.c and s3_srvr.c. |
| The ASN.1 signature-verification implementation in the rsa_item_verify function in crypto/rsa/rsa_ameth.c in OpenSSL 1.0.2 before 1.0.2a allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via crafted RSA PSS parameters to an endpoint that uses the certificate-verification feature. |
| Multiple buffer overflows in crypto/srp/srp_lib.c in the SRP implementation in OpenSSL 1.0.1 before 1.0.1i allow remote attackers to cause a denial of service (application crash) or possibly have unspecified other impact via an invalid SRP (1) g, (2) A, or (3) B parameter. |
| The tls_decrypt_ticket function in ssl/t1_lib.c in OpenSSL before 1.1.0 does not consider the HMAC size during validation of the ticket length, which allows remote attackers to cause a denial of service via a ticket that is too short. |
| Integer overflow in the MDC2_Update function in crypto/mdc2/mdc2dgst.c in OpenSSL before 1.1.0 allows remote attackers to cause a denial of service (out-of-bounds write and application crash) or possibly have unspecified other impact via unknown vectors. |
| The ssl3_client_hello function in s3_clnt.c in OpenSSL 1.0.2 before 1.0.2a does not ensure that the PRNG is seeded before proceeding with a handshake, which makes it easier for remote attackers to defeat cryptographic protection mechanisms by sniffing the network and then conducting a brute-force attack. |
| The ASN1_TYPE_cmp function in crypto/asn1/a_type.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a does not properly perform boolean-type comparisons, which allows remote attackers to cause a denial of service (invalid read operation and application crash) via a crafted X.509 certificate to an endpoint that uses the certificate-verification feature. |
| The state-machine implementation in OpenSSL 1.1.0 before 1.1.0a allocates memory before checking for an excessive length, which might allow remote attackers to cause a denial of service (memory consumption) via crafted TLS messages, related to statem/statem.c and statem/statem_lib.c. |
| The DTLS implementation in OpenSSL before 1.1.0 does not properly restrict the lifetime of queue entries associated with unused out-of-order messages, which allows remote attackers to cause a denial of service (memory consumption) by maintaining many crafted DTLS sessions simultaneously, related to d1_lib.c, statem_dtls.c, statem_lib.c, and statem_srvr.c. |
| The dtls1_reassemble_fragment function in d1_both.c in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h does not properly validate fragment lengths in DTLS ClientHello messages, which allows remote attackers to execute arbitrary code or cause a denial of service (buffer overflow and application crash) via a long non-initial fragment. |
| statem/statem_dtls.c in the DTLS implementation in OpenSSL 1.1.0 before 1.1.0a allocates memory before checking for an excessive length, which might allow remote attackers to cause a denial of service (memory consumption) via crafted DTLS messages. |
| The X509_NAME_oneline function in crypto/x509/x509_obj.c in OpenSSL before 1.0.1t and 1.0.2 before 1.0.2h allows remote attackers to obtain sensitive information from process stack memory or cause a denial of service (buffer over-read) via crafted EBCDIC ASN.1 data. |
| The ASN1_TFLG_COMBINE implementation in crypto/asn1/tasn_dec.c in OpenSSL before 0.9.8zh, 1.0.0 before 1.0.0t, 1.0.1 before 1.0.1q, and 1.0.2 before 1.0.2e mishandles errors caused by malformed X509_ATTRIBUTE data, which allows remote attackers to obtain sensitive information from process memory by triggering a decoding failure in a PKCS#7 or CMS application. |
| ssl/s3_clnt.c in OpenSSL 1.0.0 before 1.0.0t, 1.0.1 before 1.0.1p, and 1.0.2 before 1.0.2d, when used for a multi-threaded client, writes the PSK identity hint to an incorrect data structure, which allows remote servers to cause a denial of service (race condition and double free) via a crafted ServerKeyExchange message. |
| The BN_GF2m_mod_inv function in crypto/bn/bn_gf2m.c in OpenSSL before 0.9.8s, 1.0.0 before 1.0.0e, 1.0.1 before 1.0.1n, and 1.0.2 before 1.0.2b does not properly handle ECParameters structures in which the curve is over a malformed binary polynomial field, which allows remote attackers to cause a denial of service (infinite loop) via a session that uses an Elliptic Curve algorithm, as demonstrated by an attack against a server that supports client authentication. |
| The dtls1_get_message_fragment function in d1_both.c in OpenSSL before 0.9.8za, 1.0.0 before 1.0.0m, and 1.0.1 before 1.0.1h allows remote attackers to cause a denial of service (recursion and client crash) via a DTLS hello message in an invalid DTLS handshake. |