| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Stack-based buffer overflow in the getaddrinfo function in sysdeps/posix/getaddrinfo.c in GNU C Library (aka glibc or libc6) 2.17 and earlier allows remote attackers to cause a denial of service (crash) via a (1) hostname or (2) IP address that triggers a large number of domain conversion results. |
| Buffer overflow in the extend_buffers function in the regular expression matcher (posix/regexec.c) in glibc, possibly 2.17 and earlier, allows context-dependent attackers to cause a denial of service (memory corruption and crash) via crafted multibyte characters. |
| Multiple integer overflows in the strfmon implementation in the GNU C Library (aka glibc or libc6) 2.10.1 and earlier allow context-dependent attackers to cause a denial of service (memory consumption or application crash) via a crafted format string, as demonstrated by a crafted first argument to the money_format function in PHP, a related issue to CVE-2008-1391. |
| Integer overflow in string/strcoll_l.c in the GNU C Library (aka glibc or libc6) 2.17 and earlier allows context-dependent attackers to cause a denial of service (crash) or possibly execute arbitrary code via a long string, which triggers a heap-based buffer overflow. |
| ld.so in the GNU C Library (aka glibc or libc6) before 2.11.3, and 2.12.x before 2.12.2, does not properly restrict use of the LD_AUDIT environment variable to reference dynamic shared objects (DSOs) as audit objects, which allows local users to gain privileges by leveraging an unsafe DSO located in a trusted library directory, as demonstrated by libpcprofile.so. |
| The regcomp implementation in the GNU C Library (aka glibc or libc6) through 2.11.3, and 2.12.x through 2.12.2, allows context-dependent attackers to cause a denial of service (application crash) via a regular expression containing adjacent bounded repetitions that bypass the intended RE_DUP_MAX limitation, as demonstrated by a {10,}{10,}{10,}{10,}{10,} sequence in the proftpd.gnu.c exploit for ProFTPD, related to a "RE_DUP_MAX overflow." |
| Stack-based buffer overflow in string/strcoll_l.c in the GNU C Library (aka glibc or libc6) 2.17 and earlier allows context-dependent attackers to cause a denial of service (crash) or possibly execute arbitrary code via a long string that triggers a malloc failure and use of the alloca function. |
| Multiple untrusted search path vulnerabilities in elf/dl-object.c in certain modified versions of the GNU C Library (aka glibc or libc6), including glibc-2.5-49.el5_5.6 and glibc-2.12-1.7.el6_0.3 in Red Hat Enterprise Linux, allow local users to gain privileges via a crafted dynamic shared object (DSO) in a subdirectory of the current working directory during execution of a (1) setuid or (2) setgid program that has $ORIGIN in (a) RPATH or (b) RUNPATH within the program itself or a referenced library. NOTE: this issue exists because of an incorrect fix for CVE-2010-3847. |
| Multiple integer overflows in the (1) strtod, (2) strtof, (3) strtold, (4) strtod_l, and other unspecified "related functions" in stdlib in GNU C Library (aka glibc or libc6) 2.16 allow local users to cause a denial of service (application crash) and possibly execute arbitrary code via a long string, which triggers a stack-based buffer overflow. |
| The vfprintf function in stdio-common/vfprintf.c in libc in GNU C Library (aka glibc) 2.14 and other versions does not properly calculate a buffer length, which allows context-dependent attackers to bypass the FORTIFY_SOURCE format-string protection mechanism and cause a denial of service (segmentation fault and crash) via a format string with a large number of format specifiers that triggers "desynchronization within the buffer size handling," a different vulnerability than CVE-2012-3404. |
| The vfprintf function in stdio-common/vfprintf.c in libc in GNU C Library (aka glibc) 2.12 and other versions does not properly calculate a buffer length, which allows context-dependent attackers to bypass the FORTIFY_SOURCE format-string protection mechanism and cause a denial of service (stack corruption and crash) via a format string that uses positional parameters and many format specifiers. |
| nis/nss_nis/nis-pwd.c in the GNU C Library (aka glibc or libc6) 2.7 and Embedded GLIBC (EGLIBC) 2.10.2 adds information from the passwd.adjunct.byname map to entries in the passwd map, which allows remote attackers to obtain the encrypted passwords of NIS accounts by calling the getpwnam function. |
| The BIND 4 and BIND 8.2.x stub resolver libraries, and other libraries such as glibc 2.2.5 and earlier, libc, and libresolv, use the maximum buffer size instead of the actual size when processing a DNS response, which causes the stub resolvers to read past the actual boundary ("read buffer overflow"), allowing remote attackers to cause a denial of service (crash). |
| The glibcbug script in glibc 2.3.4 and earlier allows local users to overwrite arbitrary files via a symlink attack on temporary files, a different vulnerability than CVE-2004-0968. |
| Integer overflow in the xdrmem_getbytes() function, and possibly other functions, of XDR (external data representation) libraries derived from SunRPC, including libnsl, libc, glibc, and dietlibc, allows remote attackers to execute arbitrary code via certain integer values in length fields, a different vulnerability than CVE-2002-0391. |
| The Sun RPC functionality in multiple libc implementations does not provide a time-out mechanism when reading data from TCP connections, which allows remote attackers to cause a denial of service (hang). |
| The catchsegv script in glibc 2.3.2 and earlier allows local users to overwrite files via a symlink attack on temporary files. |
| The resolver in glibc 2.1.3 uses predictable IDs, which allows a local attacker to spoof DNS query results. |
| Buffer overflow in DNS resolver functions that perform lookup of network names and addresses, as used in BIND 4.9.8 and ported to glibc 2.2.5 and earlier, allows remote malicious DNS servers to execute arbitrary code through a subroutine used by functions such as getnetbyname and getnetbyaddr. |
| The unsetenv function in glibc 2.1.1 does not properly unset an environmental variable if the variable is provided twice to a program, which could allow local users to execute arbitrary commands in setuid programs by specifying their own duplicate environmental variables such as LD_PRELOAD or LD_LIBRARY_PATH. |