| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Heap-based Buffer Overflow vulnerability in TP-Link Archer AX53 v1.0 (tmpserver modules) allows authenticated adjacent attackers to cause a segmentation fault or potentially execute arbitrary code via a specially crafted network packet containing a field whose length exceeds the maximum expected value.This issue affects Archer AX53 v1.0: through 1.3.1 Build 20241120. |
| Heap-based Buffer Overflow vulnerability in TP-Link Archer AX53 v1.0 (tmpserver modules) allows authenticated adjacent attackers to cause a segmentation fault or potentially execute arbitrary code via a specially crafted network packet whose length exceeds the maximum expected value.This issue affects Archer AX53 v1.0: through 1.3.1 Build 20241120. |
| Heap-based Buffer Overflow vulnerability in TP-Link Archer AX53 v1.0 (tmpserver modules) allows authenticated adjacent attackers to cause a segmentation fault or potentially execute arbitrary code
via a specially crafted set of network packets containing an excessive number of host entries
This issue affects Archer AX53 v1.0: through 1.3.1 Build 20241120. |
| HCL AION is affected by a Permanent Cookie Containing Sensitive Session Information vulnerability. It is storing sensitive session data in persistent cookies may increase the risk of unauthorized access if the cookies are intercepted or compromised. This issue affects AION: 2.0. |
| HCL AION is affected by a Missing or Insecure HTTP Strict-Transport-Security (HSTS) Header vulnerability. This can allow insecure connections, potentially exposing the application to man-in-the-middle and protocol downgrade attacks.. This issue affects AION: 2.0. |
| HCL AION is affected by a Cookie with Insecure, Improper, or Missing SameSite vulnerability. This can allow cookies to be sent in cross-site requests, potentially increasing exposure to cross-site request forgery and related security risks. This issue affects AION: 2.0. |
| SolarWinds Web Help Desk was found to be susceptible to an untrusted data deserialization vulnerability that could lead to remote code execution, which would allow an attacker to run commands on the host machine. This could be exploited without authentication. |
| Halo is an open source website building tool. Prior to version 2.20.13, a vulnerability in Halo allows attackers to bypass file type validation controls. This bypass enables the upload of malicious files including executables and HTML files, which can lead to stored cross-site scripting attacks and potential remote code execution under certain circumstances. This issue has been patched in version 2.20.13. |
| In the Linux kernel, the following vulnerability has been resolved:
ring-buffer: Fix deadloop issue on reading trace_pipe
Soft lockup occurs when reading file 'trace_pipe':
watchdog: BUG: soft lockup - CPU#6 stuck for 22s! [cat:4488]
[...]
RIP: 0010:ring_buffer_empty_cpu+0xed/0x170
RSP: 0018:ffff88810dd6fc48 EFLAGS: 00000246
RAX: 0000000000000000 RBX: 0000000000000246 RCX: ffffffff93d1aaeb
RDX: ffff88810a280040 RSI: 0000000000000008 RDI: ffff88811164b218
RBP: ffff88811164b218 R08: 0000000000000000 R09: ffff88815156600f
R10: ffffed102a2acc01 R11: 0000000000000001 R12: 0000000051651901
R13: 0000000000000000 R14: ffff888115e49500 R15: 0000000000000000
[...]
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f8d853c2000 CR3: 000000010dcd8000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
__find_next_entry+0x1a8/0x4b0
? peek_next_entry+0x250/0x250
? down_write+0xa5/0x120
? down_write_killable+0x130/0x130
trace_find_next_entry_inc+0x3b/0x1d0
tracing_read_pipe+0x423/0xae0
? tracing_splice_read_pipe+0xcb0/0xcb0
vfs_read+0x16b/0x490
ksys_read+0x105/0x210
? __ia32_sys_pwrite64+0x200/0x200
? switch_fpu_return+0x108/0x220
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x61/0xc6
Through the vmcore, I found it's because in tracing_read_pipe(),
ring_buffer_empty_cpu() found some buffer is not empty but then it
cannot read anything due to "rb_num_of_entries() == 0" always true,
Then it infinitely loop the procedure due to user buffer not been
filled, see following code path:
tracing_read_pipe() {
... ...
waitagain:
tracing_wait_pipe() // 1. find non-empty buffer here
trace_find_next_entry_inc() // 2. loop here try to find an entry
__find_next_entry()
ring_buffer_empty_cpu(); // 3. find non-empty buffer
peek_next_entry() // 4. but peek always return NULL
ring_buffer_peek()
rb_buffer_peek()
rb_get_reader_page()
// 5. because rb_num_of_entries() == 0 always true here
// then return NULL
// 6. user buffer not been filled so goto 'waitgain'
// and eventually leads to an deadloop in kernel!!!
}
By some analyzing, I found that when resetting ringbuffer, the 'entries'
of its pages are not all cleared (see rb_reset_cpu()). Then when reducing
the ringbuffer, and if some reduced pages exist dirty 'entries' data, they
will be added into 'cpu_buffer->overrun' (see rb_remove_pages()), which
cause wrong 'overrun' count and eventually cause the deadloop issue.
To fix it, we need to clear every pages in rb_reset_cpu(). |
| Blind Server-Side Request Forgery (SSRF) in Omada Controllers through webhook functionality, enabling crafted requests to internal services, which may lead to enumeration of information. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: fix skb_copy_ubufs() vs BIG TCP
David Ahern reported crashes in skb_copy_ubufs() caused by TCP tx zerocopy
using hugepages, and skb length bigger than ~68 KB.
skb_copy_ubufs() assumed it could copy all payload using up to
MAX_SKB_FRAGS order-0 pages.
This assumption broke when BIG TCP was able to put up to 512 KB per skb.
We did not hit this bug at Google because we use CONFIG_MAX_SKB_FRAGS=45
and limit gso_max_size to 180000.
A solution is to use higher order pages if needed.
v2: add missing __GFP_COMP, or we leak memory. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-core: fix dev_pm_qos memleak
Call dev_pm_qos_hide_latency_tolerance() in the error unwind patch to
avoid following kmemleak:-
blktests (master) # kmemleak-clear; ./check nvme/044;
blktests (master) # kmemleak-scan ; kmemleak-show
nvme/044 (Test bi-directional authentication) [passed]
runtime 2.111s ... 2.124s
unreferenced object 0xffff888110c46240 (size 96):
comm "nvme", pid 33461, jiffies 4345365353 (age 75.586s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000069ac2cec>] kmalloc_trace+0x25/0x90
[<000000006acc66d5>] dev_pm_qos_update_user_latency_tolerance+0x6f/0x100
[<00000000cc376ea7>] nvme_init_ctrl+0x38e/0x410 [nvme_core]
[<000000007df61b4b>] 0xffffffffc05e88b3
[<00000000d152b985>] 0xffffffffc05744cb
[<00000000f04a4041>] vfs_write+0xc5/0x3c0
[<00000000f9491baf>] ksys_write+0x5f/0xe0
[<000000001c46513d>] do_syscall_64+0x3b/0x90
[<00000000ecf348fe>] entry_SYSCALL_64_after_hwframe+0x72/0xdc |
| In the Linux kernel, the following vulnerability has been resolved:
srcu: Delegate work to the boot cpu if using SRCU_SIZE_SMALL
Commit 994f706872e6 ("srcu: Make Tree SRCU able to operate without
snp_node array") assumes that cpu 0 is always online. However, there
really are situations when some other CPU is the boot CPU, for example,
when booting a kdump kernel with the maxcpus=1 boot parameter.
On PowerPC, the kdump kernel can hang as follows:
...
[ 1.740036] systemd[1]: Hostname set to <xyz.com>
[ 243.686240] INFO: task systemd:1 blocked for more than 122 seconds.
[ 243.686264] Not tainted 6.1.0-rc1 #1
[ 243.686272] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 243.686281] task:systemd state:D stack:0 pid:1 ppid:0 flags:0x00042000
[ 243.686296] Call Trace:
[ 243.686301] [c000000016657640] [c000000016657670] 0xc000000016657670 (unreliable)
[ 243.686317] [c000000016657830] [c00000001001dec0] __switch_to+0x130/0x220
[ 243.686333] [c000000016657890] [c000000010f607b8] __schedule+0x1f8/0x580
[ 243.686347] [c000000016657940] [c000000010f60bb4] schedule+0x74/0x140
[ 243.686361] [c0000000166579b0] [c000000010f699b8] schedule_timeout+0x168/0x1c0
[ 243.686374] [c000000016657a80] [c000000010f61de8] __wait_for_common+0x148/0x360
[ 243.686387] [c000000016657b20] [c000000010176bb0] __flush_work.isra.0+0x1c0/0x3d0
[ 243.686401] [c000000016657bb0] [c0000000105f2768] fsnotify_wait_marks_destroyed+0x28/0x40
[ 243.686415] [c000000016657bd0] [c0000000105f21b8] fsnotify_destroy_group+0x68/0x160
[ 243.686428] [c000000016657c40] [c0000000105f6500] inotify_release+0x30/0xa0
[ 243.686440] [c000000016657cb0] [c0000000105751a8] __fput+0xc8/0x350
[ 243.686452] [c000000016657d00] [c00000001017d524] task_work_run+0xe4/0x170
[ 243.686464] [c000000016657d50] [c000000010020e94] do_notify_resume+0x134/0x140
[ 243.686478] [c000000016657d80] [c00000001002eb18] interrupt_exit_user_prepare_main+0x198/0x270
[ 243.686493] [c000000016657de0] [c00000001002ec60] syscall_exit_prepare+0x70/0x180
[ 243.686505] [c000000016657e10] [c00000001000bf7c] system_call_vectored_common+0xfc/0x280
[ 243.686520] --- interrupt: 3000 at 0x7fffa47d5ba4
[ 243.686528] NIP: 00007fffa47d5ba4 LR: 0000000000000000 CTR: 0000000000000000
[ 243.686538] REGS: c000000016657e80 TRAP: 3000 Not tainted (6.1.0-rc1)
[ 243.686548] MSR: 800000000000d033 <SF,EE,PR,ME,IR,DR,RI,LE> CR: 42044440 XER: 00000000
[ 243.686572] IRQMASK: 0
[ 243.686572] GPR00: 0000000000000006 00007ffffa606710 00007fffa48e7200 0000000000000000
[ 243.686572] GPR04: 0000000000000002 000000000000000a 0000000000000000 0000000000000001
[ 243.686572] GPR08: 000001000c172dd0 0000000000000000 0000000000000000 0000000000000000
[ 243.686572] GPR12: 0000000000000000 00007fffa4ff4bc0 0000000000000000 0000000000000000
[ 243.686572] GPR16: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
[ 243.686572] GPR20: 0000000132dfdc50 000000000000000e 0000000000189375 0000000000000000
[ 243.686572] GPR24: 00007ffffa606ae0 0000000000000005 000001000c185490 000001000c172570
[ 243.686572] GPR28: 000001000c172990 000001000c184850 000001000c172e00 00007fffa4fedd98
[ 243.686683] NIP [00007fffa47d5ba4] 0x7fffa47d5ba4
[ 243.686691] LR [0000000000000000] 0x0
[ 243.686698] --- interrupt: 3000
[ 243.686708] INFO: task kworker/u16:1:24 blocked for more than 122 seconds.
[ 243.686717] Not tainted 6.1.0-rc1 #1
[ 243.686724] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 243.686733] task:kworker/u16:1 state:D stack:0 pid:24 ppid:2 flags:0x00000800
[ 243.686747] Workqueue: events_unbound fsnotify_mark_destroy_workfn
[ 243.686758] Call Trace:
[ 243.686762] [c0000000166736e0] [c00000004fd91000] 0xc00000004fd91000 (unreliable)
[ 243.686775] [c0000000166738d0] [c00000001001dec0] __switch_to+0x130/0x220
[ 243.686788] [c000000016673930] [c000000010f607b8] __schedule+0x1f8/0x
---truncated--- |
| Root File System Not Mounted as Read-Only configuration vulnerability. This can allow unintended modifications to critical system files, potentially increasing the risk of system compromise or unauthorized changes.This issue affects AION: 2.0. |
| Password Confirmation Bypass vulnerability in Omada Controllers, allowing an attacker with a valid session token to bypass secondary verification, and change the user’s password without proper confirmation, leading to weakened account security. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: output extra debug info if we failed to find an inline backref
[BUG]
Syzbot reported several warning triggered inside
lookup_inline_extent_backref().
[CAUSE]
As usual, the reproducer doesn't reliably trigger locally here, but at
least we know the WARN_ON() is triggered when an inline backref can not
be found, and it can only be triggered when @insert is true. (I.e.
inserting a new inline backref, which means the backref should already
exist)
[ENHANCEMENT]
After the WARN_ON(), dump all the parameters and the extent tree
leaf to help debug. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_event: call disconnect callback before deleting conn
In hci_cs_disconnect, we do hci_conn_del even if disconnection failed.
ISO, L2CAP and SCO connections refer to the hci_conn without
hci_conn_get, so disconn_cfm must be called so they can clean up their
conn, otherwise use-after-free occurs.
ISO:
==========================================================
iso_sock_connect:880: sk 00000000eabd6557
iso_connect_cis:356: 70:1a:b8:98:ff:a2 -> 28:3d:c2:4a:7e:da
...
iso_conn_add:140: hcon 000000001696f1fd conn 00000000b6251073
hci_dev_put:1487: hci0 orig refcnt 17
__iso_chan_add:214: conn 00000000b6251073
iso_sock_clear_timer:117: sock 00000000eabd6557 state 3
...
hci_rx_work:4085: hci0 Event packet
hci_event_packet:7601: hci0: event 0x0f
hci_cmd_status_evt:4346: hci0: opcode 0x0406
hci_cs_disconnect:2760: hci0: status 0x0c
hci_sent_cmd_data:3107: hci0 opcode 0x0406
hci_conn_del:1151: hci0 hcon 000000001696f1fd handle 2560
hci_conn_unlink:1102: hci0: hcon 000000001696f1fd
hci_conn_drop:1451: hcon 00000000d8521aaf orig refcnt 2
hci_chan_list_flush:2780: hcon 000000001696f1fd
hci_dev_put:1487: hci0 orig refcnt 21
hci_dev_put:1487: hci0 orig refcnt 20
hci_req_cmd_complete:3978: opcode 0x0406 status 0x0c
... <no iso_* activity on sk/conn> ...
iso_sock_sendmsg:1098: sock 00000000dea5e2e0, sk 00000000eabd6557
BUG: kernel NULL pointer dereference, address: 0000000000000668
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-1.fc38 04/01/2014
RIP: 0010:iso_sock_sendmsg (net/bluetooth/iso.c:1112) bluetooth
==========================================================
L2CAP:
==================================================================
hci_cmd_status_evt:4359: hci0: opcode 0x0406
hci_cs_disconnect:2760: hci0: status 0x0c
hci_sent_cmd_data:3085: hci0 opcode 0x0406
hci_conn_del:1151: hci0 hcon ffff88800c999000 handle 3585
hci_conn_unlink:1102: hci0: hcon ffff88800c999000
hci_chan_list_flush:2780: hcon ffff88800c999000
hci_chan_del:2761: hci0 hcon ffff88800c999000 chan ffff888018ddd280
...
BUG: KASAN: slab-use-after-free in hci_send_acl+0x2d/0x540 [bluetooth]
Read of size 8 at addr ffff888018ddd298 by task bluetoothd/1175
CPU: 0 PID: 1175 Comm: bluetoothd Tainted: G E 6.4.0-rc4+ #2
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-1.fc38 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x5b/0x90
print_report+0xcf/0x670
? __virt_addr_valid+0xf8/0x180
? hci_send_acl+0x2d/0x540 [bluetooth]
kasan_report+0xa8/0xe0
? hci_send_acl+0x2d/0x540 [bluetooth]
hci_send_acl+0x2d/0x540 [bluetooth]
? __pfx___lock_acquire+0x10/0x10
l2cap_chan_send+0x1fd/0x1300 [bluetooth]
? l2cap_sock_sendmsg+0xf2/0x170 [bluetooth]
? __pfx_l2cap_chan_send+0x10/0x10 [bluetooth]
? lock_release+0x1d5/0x3c0
? mark_held_locks+0x1a/0x90
l2cap_sock_sendmsg+0x100/0x170 [bluetooth]
sock_write_iter+0x275/0x280
? __pfx_sock_write_iter+0x10/0x10
? __pfx___lock_acquire+0x10/0x10
do_iter_readv_writev+0x176/0x220
? __pfx_do_iter_readv_writev+0x10/0x10
? find_held_lock+0x83/0xa0
? selinux_file_permission+0x13e/0x210
do_iter_write+0xda/0x340
vfs_writev+0x1b4/0x400
? __pfx_vfs_writev+0x10/0x10
? __seccomp_filter+0x112/0x750
? populate_seccomp_data+0x182/0x220
? __fget_light+0xdf/0x100
? do_writev+0x19d/0x210
do_writev+0x19d/0x210
? __pfx_do_writev+0x10/0x10
? mark_held_locks+0x1a/0x90
do_syscall_64+0x60/0x90
? lockdep_hardirqs_on_prepare+0x149/0x210
? do_syscall_64+0x6c/0x90
? lockdep_hardirqs_on_prepare+0x149/0x210
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x7ff45cb23e64
Code: 15 d1 1f 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 f3 0f 1e fa 80 3d 9d a7 0d 00 00 74 13 b8 14 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 54 c3 0f 1f 00 48 83 ec 28 89 54 24 1c 48 89
RSP: 002b:00007fff21ae09b8 EFLAGS: 00000202 ORIG_RAX: 0000000000000014
RAX: ffffffffffffffda RBX:
---truncated--- |
| HCL AION is susceptible to Missing Content-Security-Policy.
An The absence of a CSP header may increase the risk of cross-site scripting and other content injection attacks by allowing unsafe scripts or resources to execute..This issue affects AION: 2.0. |
| Shenzhen Tenda W30E V2 firmware versions up to and including V16.01.0.19(5037) contain an authorization flaw in the user management API that allows a low-privileged authenticated user to change the administrator account password. By sending a crafted request directly to the backend endpoint, an attacker can bypass role-based restrictions enforced by the web interface and obtain full administrative privileges. |
| PyMdown Extensions is a set of extensions for the `Python-Markdown` markdown project. Versions prior to 10.16.1 have a ReDOS bug found within the figure caption extension (`pymdownx.blocks.caption`). In systems that take unchecked user content, this could cause long hanges when processing the data if a malicious payload was crafted. This issue is patched in Release 10.16.1. As a workaround, those who process unknown user content without timeouts or other safeguards in place to prevent really large, malicious content being aimed at systems may avoid the use of `pymdownx.blocks.caption` until they're able to upgrade. |