| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
locking/spinlock/debug: Fix data-race in do_raw_write_lock
KCSAN reports:
BUG: KCSAN: data-race in do_raw_write_lock / do_raw_write_lock
write (marked) to 0xffff800009cf504c of 4 bytes by task 1102 on cpu 1:
do_raw_write_lock+0x120/0x204
_raw_write_lock_irq
do_exit
call_usermodehelper_exec_async
ret_from_fork
read to 0xffff800009cf504c of 4 bytes by task 1103 on cpu 0:
do_raw_write_lock+0x88/0x204
_raw_write_lock_irq
do_exit
call_usermodehelper_exec_async
ret_from_fork
value changed: 0xffffffff -> 0x00000001
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 1103 Comm: kworker/u4:1 6.1.111
Commit 1a365e822372 ("locking/spinlock/debug: Fix various data races") has
adressed most of these races, but seems to be not consistent/not complete.
>From do_raw_write_lock() only debug_write_lock_after() part has been
converted to WRITE_ONCE(), but not debug_write_lock_before() part.
Do it now. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: pcl818: fix null-ptr-deref in pcl818_ai_cancel()
Syzbot identified an issue [1] in pcl818_ai_cancel(), which stems from
the fact that in case of early device detach via pcl818_detach(),
subdevice dev->read_subdev may not have initialized its pointer to
&struct comedi_async as intended. Thus, any such dereferencing of
&s->async->cmd will lead to general protection fault and kernel crash.
Mitigate this problem by removing a call to pcl818_ai_cancel() from
pcl818_detach() altogether. This way, if the subdevice setups its
support for async commands, everything async-related will be
handled via subdevice's own ->cancel() function in
comedi_device_detach_locked() even before pcl818_detach(). If no
support for asynchronous commands is provided, there is no need
to cancel anything either.
[1] Syzbot crash:
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000005: 0000 [#1] SMP KASAN PTI
KASAN: null-ptr-deref in range [0x0000000000000028-0x000000000000002f]
CPU: 1 UID: 0 PID: 6050 Comm: syz.0.18 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/18/2025
RIP: 0010:pcl818_ai_cancel+0x69/0x3f0 drivers/comedi/drivers/pcl818.c:762
...
Call Trace:
<TASK>
pcl818_detach+0x66/0xd0 drivers/comedi/drivers/pcl818.c:1115
comedi_device_detach_locked+0x178/0x750 drivers/comedi/drivers.c:207
do_devconfig_ioctl drivers/comedi/comedi_fops.c:848 [inline]
comedi_unlocked_ioctl+0xcde/0x1020 drivers/comedi/comedi_fops.c:2178
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
... |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: c6xdigio: Fix invalid PNP driver unregistration
The Comedi low-level driver "c6xdigio" seems to be for a parallel port
connected device. When the Comedi core calls the driver's Comedi
"attach" handler `c6xdigio_attach()` to configure a Comedi to use this
driver, it tries to enable the parallel port PNP resources by
registering a PNP driver with `pnp_register_driver()`, but ignores the
return value. (The `struct pnp_driver` it uses has only the `name` and
`id_table` members filled in.) The driver's Comedi "detach" handler
`c6xdigio_detach()` unconditionally unregisters the PNP driver with
`pnp_unregister_driver()`.
It is possible for `c6xdigio_attach()` to return an error before it
calls `pnp_register_driver()` and it is possible for the call to
`pnp_register_driver()` to return an error (that is ignored). In both
cases, the driver should not be calling `pnp_unregister_driver()` as it
does in `c6xdigio_detach()`. (Note that `c6xdigio_detach()` will be
called by the Comedi core if `c6xdigio_attach()` returns an error, or if
the Comedi core decides to detach the Comedi device from the driver for
some other reason.)
The unconditional call to `pnp_unregister_driver()` without a previous
successful call to `pnp_register_driver()` will cause
`driver_unregister()` to issue a warning "Unexpected driver
unregister!". This was detected by Syzbot [1].
Also, the PNP driver registration and unregistration should be done at
module init and exit time, respectively, not when attaching or detaching
Comedi devices to the driver. (There might be more than one Comedi
device being attached to the driver, although that is unlikely.)
Change the driver to do the PNP driver registration at module init time,
and the unregistration at module exit time. Since `c6xdigio_detach()`
now only calls `comedi_legacy_detach()`, remove the function and change
the Comedi driver "detach" handler to `comedi_legacy_detach`.
-------------------------------------------
[1] Syzbot sample crash report:
Unexpected driver unregister!
WARNING: CPU: 0 PID: 5970 at drivers/base/driver.c:273 driver_unregister drivers/base/driver.c:273 [inline]
WARNING: CPU: 0 PID: 5970 at drivers/base/driver.c:273 driver_unregister+0x90/0xb0 drivers/base/driver.c:270
Modules linked in:
CPU: 0 UID: 0 PID: 5970 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/02/2025
RIP: 0010:driver_unregister drivers/base/driver.c:273 [inline]
RIP: 0010:driver_unregister+0x90/0xb0 drivers/base/driver.c:270
Code: 48 89 ef e8 c2 e6 82 fc 48 89 df e8 3a 93 ff ff 5b 5d e9 c3 6d d9 fb e8 be 6d d9 fb 90 48 c7 c7 e0 f8 1f 8c e8 51 a2 97 fb 90 <0f> 0b 90 90 5b 5d e9 a5 6d d9 fb e8 e0 f4 41 fc eb 94 e8 d9 f4 41
RSP: 0018:ffffc9000373f9a0 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffffffff8ff24720 RCX: ffffffff817b6ee8
RDX: ffff88807c932480 RSI: ffffffff817b6ef5 RDI: 0000000000000001
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000001 R12: ffffffff8ff24660
R13: dffffc0000000000 R14: 0000000000000000 R15: ffff88814cca0000
FS: 000055556dab1500(0000) GS:ffff8881249d9000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055f77f285cd0 CR3: 000000007d871000 CR4: 00000000003526f0
Call Trace:
<TASK>
comedi_device_detach_locked+0x12f/0xa50 drivers/comedi/drivers.c:207
comedi_device_detach+0x67/0xb0 drivers/comedi/drivers.c:215
comedi_device_attach+0x43d/0x900 drivers/comedi/drivers.c:1011
do_devconfig_ioctl+0x1b1/0x710 drivers/comedi/comedi_fops.c:872
comedi_unlocked_ioctl+0x165d/0x2f00 drivers/comedi/comedi_fops.c:2178
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:597 [inline]
__se_sys_ioctl fs/ioctl.c:583 [inline]
__x64_sys_ioctl+0x18e/0x210 fs/ioctl.c:583
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_sys
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_cake: Fix incorrect qlen reduction in cake_drop
In cake_drop(), qdisc_tree_reduce_backlog() is used to update the qlen
and backlog of the qdisc hierarchy. Its caller, cake_enqueue(), assumes
that the parent qdisc will enqueue the current packet. However, this
assumption breaks when cake_enqueue() returns NET_XMIT_CN: the parent
qdisc stops enqueuing current packet, leaving the tree qlen/backlog
accounting inconsistent. This mismatch can lead to a NULL dereference
(e.g., when the parent Qdisc is qfq_qdisc).
This patch computes the qlen/backlog delta in a more robust way by
observing the difference before and after the series of cake_drop()
calls, and then compensates the qdisc tree accounting if cake_enqueue()
returns NET_XMIT_CN.
To ensure correct compensation when ACK thinning is enabled, a new
variable is introduced to keep qlen unchanged. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: udc: fix use-after-free in usb_gadget_state_work
A race condition during gadget teardown can lead to a use-after-free
in usb_gadget_state_work(), as reported by KASAN:
BUG: KASAN: invalid-access in sysfs_notify+0x2c/0xd0
Workqueue: events usb_gadget_state_work
The fundamental race occurs because a concurrent event (e.g., an
interrupt) can call usb_gadget_set_state() and schedule gadget->work
at any time during the cleanup process in usb_del_gadget().
Commit 399a45e5237c ("usb: gadget: core: flush gadget workqueue after
device removal") attempted to fix this by moving flush_work() to after
device_del(). However, this does not fully solve the race, as a new
work item can still be scheduled *after* flush_work() completes but
before the gadget's memory is freed, leading to the same use-after-free.
This patch fixes the race condition robustly by introducing a 'teardown'
flag and a 'state_lock' spinlock to the usb_gadget struct. The flag is
set during cleanup in usb_del_gadget() *before* calling flush_work() to
prevent any new work from being scheduled once cleanup has commenced.
The scheduling site, usb_gadget_set_state(), now checks this flag under
the lock before queueing the work, thus safely closing the race window. |
| In the Linux kernel, the following vulnerability has been resolved:
bfs: Reconstruct file type when loading from disk
syzbot is reporting that S_IFMT bits of inode->i_mode can become bogus when
the S_IFMT bits of the 32bits "mode" field loaded from disk are corrupted
or when the 32bits "attributes" field loaded from disk are corrupted.
A documentation says that BFS uses only lower 9 bits of the "mode" field.
But I can't find an explicit explanation that the unused upper 23 bits
(especially, the S_IFMT bits) are initialized with 0.
Therefore, ignore the S_IFMT bits of the "mode" field loaded from disk.
Also, verify that the value of the "attributes" field loaded from disk is
either BFS_VREG or BFS_VDIR (because BFS supports only regular files and
the root directory). |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: refresh inline data size before write operations
The cached ei->i_inline_size can become stale between the initial size
check and when ext4_update_inline_data()/ext4_create_inline_data() use
it. Although ext4_get_max_inline_size() reads the correct value at the
time of the check, concurrent xattr operations can modify i_inline_size
before ext4_write_lock_xattr() is acquired.
This causes ext4_update_inline_data() and ext4_create_inline_data() to
work with stale capacity values, leading to a BUG_ON() crash in
ext4_write_inline_data():
kernel BUG at fs/ext4/inline.c:1331!
BUG_ON(pos + len > EXT4_I(inode)->i_inline_size);
The race window:
1. ext4_get_max_inline_size() reads i_inline_size = 60 (correct)
2. Size check passes for 50-byte write
3. [Another thread adds xattr, i_inline_size changes to 40]
4. ext4_write_lock_xattr() acquires lock
5. ext4_update_inline_data() uses stale i_inline_size = 60
6. Attempts to write 50 bytes but only 40 bytes actually available
7. BUG_ON() triggers
Fix this by recalculating i_inline_size via ext4_find_inline_data_nolock()
immediately after acquiring xattr_sem. This ensures ext4_update_inline_data()
and ext4_create_inline_data() work with current values that are protected
from concurrent modifications.
This is similar to commit a54c4613dac1 ("ext4: fix race writing to an
inline_data file while its xattrs are changing") which fixed i_inline_off
staleness. This patch addresses the related i_inline_size staleness issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: add i_data_sem protection in ext4_destroy_inline_data_nolock()
Fix a race between inline data destruction and block mapping.
The function ext4_destroy_inline_data_nolock() changes the inode data
layout by clearing EXT4_INODE_INLINE_DATA and setting EXT4_INODE_EXTENTS.
At the same time, another thread may execute ext4_map_blocks(), which
tests EXT4_INODE_EXTENTS to decide whether to call ext4_ext_map_blocks()
or ext4_ind_map_blocks().
Without i_data_sem protection, ext4_ind_map_blocks() may receive inode
with EXT4_INODE_EXTENTS flag and triggering assert.
kernel BUG at fs/ext4/indirect.c:546!
EXT4-fs (loop2): unmounting filesystem.
invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
RIP: 0010:ext4_ind_map_blocks.cold+0x2b/0x5a fs/ext4/indirect.c:546
Call Trace:
<TASK>
ext4_map_blocks+0xb9b/0x16f0 fs/ext4/inode.c:681
_ext4_get_block+0x242/0x590 fs/ext4/inode.c:822
ext4_block_write_begin+0x48b/0x12c0 fs/ext4/inode.c:1124
ext4_write_begin+0x598/0xef0 fs/ext4/inode.c:1255
ext4_da_write_begin+0x21e/0x9c0 fs/ext4/inode.c:3000
generic_perform_write+0x259/0x5d0 mm/filemap.c:3846
ext4_buffered_write_iter+0x15b/0x470 fs/ext4/file.c:285
ext4_file_write_iter+0x8e0/0x17f0 fs/ext4/file.c:679
call_write_iter include/linux/fs.h:2271 [inline]
do_iter_readv_writev+0x212/0x3c0 fs/read_write.c:735
do_iter_write+0x186/0x710 fs/read_write.c:861
vfs_iter_write+0x70/0xa0 fs/read_write.c:902
iter_file_splice_write+0x73b/0xc90 fs/splice.c:685
do_splice_from fs/splice.c:763 [inline]
direct_splice_actor+0x10f/0x170 fs/splice.c:950
splice_direct_to_actor+0x33a/0xa10 fs/splice.c:896
do_splice_direct+0x1a9/0x280 fs/splice.c:1002
do_sendfile+0xb13/0x12c0 fs/read_write.c:1255
__do_sys_sendfile64 fs/read_write.c:1323 [inline]
__se_sys_sendfile64 fs/read_write.c:1309 [inline]
__x64_sys_sendfile64+0x1cf/0x210 fs/read_write.c:1309
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x35/0x80 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x6e/0xd8 |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: multiq3: sanitize config options in multiq3_attach()
Syzbot identified an issue [1] in multiq3_attach() that induces a
task timeout due to open() or COMEDI_DEVCONFIG ioctl operations,
specifically, in the case of multiq3 driver.
This problem arose when syzkaller managed to craft weird configuration
options used to specify the number of channels in encoder subdevice.
If a particularly great number is passed to s->n_chan in
multiq3_attach() via it->options[2], then multiple calls to
multiq3_encoder_reset() at the end of driver-specific attach() method
will be running for minutes, thus blocking tasks and affected devices
as well.
While this issue is most likely not too dangerous for real-life
devices, it still makes sense to sanitize configuration inputs. Enable
a sensible limit on the number of encoder chips (4 chips max, each
with 2 channels) to stop this behaviour from manifesting.
[1] Syzbot crash:
INFO: task syz.2.19:6067 blocked for more than 143 seconds.
...
Call Trace:
<TASK>
context_switch kernel/sched/core.c:5254 [inline]
__schedule+0x17c4/0x4d60 kernel/sched/core.c:6862
__schedule_loop kernel/sched/core.c:6944 [inline]
schedule+0x165/0x360 kernel/sched/core.c:6959
schedule_preempt_disabled+0x13/0x30 kernel/sched/core.c:7016
__mutex_lock_common kernel/locking/mutex.c:676 [inline]
__mutex_lock+0x7e6/0x1350 kernel/locking/mutex.c:760
comedi_open+0xc0/0x590 drivers/comedi/comedi_fops.c:2868
chrdev_open+0x4cc/0x5e0 fs/char_dev.c:414
do_dentry_open+0x953/0x13f0 fs/open.c:965
vfs_open+0x3b/0x340 fs/open.c:1097
... |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: check device's attached status in compat ioctls
Syzbot identified an issue [1] that crashes kernel, seemingly due to
unexistent callback dev->get_valid_routes(). By all means, this should
not occur as said callback must always be set to
get_zero_valid_routes() in __comedi_device_postconfig().
As the crash seems to appear exclusively in i386 kernels, at least,
judging from [1] reports, the blame lies with compat versions
of standard IOCTL handlers. Several of them are modified and
do not use comedi_unlocked_ioctl(). While functionality of these
ioctls essentially copy their original versions, they do not
have required sanity check for device's attached status. This,
in turn, leads to a possibility of calling select IOCTLs on a
device that has not been properly setup, even via COMEDI_DEVCONFIG.
Doing so on unconfigured devices means that several crucial steps
are missed, for instance, specifying dev->get_valid_routes()
callback.
Fix this somewhat crudely by ensuring device's attached status before
performing any ioctls, improving logic consistency between modern
and compat functions.
[1] Syzbot report:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
CR2: ffffffffffffffd6 CR3: 000000006c717000 CR4: 0000000000352ef0
Call Trace:
<TASK>
get_valid_routes drivers/comedi/comedi_fops.c:1322 [inline]
parse_insn+0x78c/0x1970 drivers/comedi/comedi_fops.c:1401
do_insnlist_ioctl+0x272/0x700 drivers/comedi/comedi_fops.c:1594
compat_insnlist drivers/comedi/comedi_fops.c:3208 [inline]
comedi_compat_ioctl+0x810/0x990 drivers/comedi/comedi_fops.c:3273
__do_compat_sys_ioctl fs/ioctl.c:695 [inline]
__se_compat_sys_ioctl fs/ioctl.c:638 [inline]
__ia32_compat_sys_ioctl+0x242/0x370 fs/ioctl.c:638
do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline]
... |
| In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix stack buffer overflow in OnAssocReq IE parsing
The Supported Rates IE length from an incoming Association Request frame
was used directly as the memcpy() length when copying into a fixed-size
16-byte stack buffer (supportRate). A malicious station can advertise an
IE length larger than 16 bytes, causing a stack buffer overflow.
Clamp ie_len to the buffer size before copying the Supported Rates IE,
and correct the bounds check when merging Extended Supported Rates to
prevent a second potential overflow.
This prevents kernel stack corruption triggered by malformed association
requests. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix out-of-bounds read in OnBeacon ESR IE parsing
The Extended Supported Rates (ESR) IE handling in OnBeacon accessed
*(p + 1 + ielen) and *(p + 2 + ielen) without verifying that these
offsets lie within the received frame buffer. A malformed beacon with
an ESR IE positioned at the end of the buffer could cause an
out-of-bounds read, potentially triggering a kernel panic.
Add a boundary check to ensure that the ESR IE body and the subsequent
bytes are within the limits of the frame before attempting to access
them.
This prevents OOB reads caused by malformed beacon frames. |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: also call xfrm_state_delete_tunnel at destroy time for states that were never added
In commit b441cf3f8c4b ("xfrm: delete x->tunnel as we delete x"), I
missed the case where state creation fails between full
initialization (->init_state has been called) and being inserted on
the lists.
In this situation, ->init_state has been called, so for IPcomp
tunnels, the fallback tunnel has been created and added onto the
lists, but the user state never gets added, because we fail before
that. The user state doesn't go through __xfrm_state_delete, so we
don't call xfrm_state_delete_tunnel for those states, and we end up
leaking the FB tunnel.
There are several codepaths affected by this: the add/update paths, in
both net/key and xfrm, and the migrate code (xfrm_migrate,
xfrm_state_migrate). A "proper" rollback of the init_state work would
probably be doable in the add/update code, but for migrate it gets
more complicated as multiple states may be involved.
At some point, the new (not-inserted) state will be destroyed, so call
xfrm_state_delete_tunnel during xfrm_state_gc_destroy. Most states
will have their fallback tunnel cleaned up during __xfrm_state_delete,
which solves the issue that b441cf3f8c4b (and other patches before it)
aimed at. All states (including FB tunnels) will be removed from the
lists once xfrm_state_fini has called flush_work(&xfrm_state_gc_work). |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: delete x->tunnel as we delete x
The ipcomp fallback tunnels currently get deleted (from the various
lists and hashtables) as the last user state that needed that fallback
is destroyed (not deleted). If a reference to that user state still
exists, the fallback state will remain on the hashtables/lists,
triggering the WARN in xfrm_state_fini. Because of those remaining
references, the fix in commit f75a2804da39 ("xfrm: destroy xfrm_state
synchronously on net exit path") is not complete.
We recently fixed one such situation in TCP due to defered freeing of
skbs (commit 9b6412e6979f ("tcp: drop secpath at the same time as we
currently drop dst")). This can also happen due to IP reassembly: skbs
with a secpath remain on the reassembly queue until netns
destruction. If we can't guarantee that the queues are flushed by the
time xfrm_state_fini runs, there may still be references to a (user)
xfrm_state, preventing the timely deletion of the corresponding
fallback state.
Instead of chasing each instance of skbs holding a secpath one by one,
this patch fixes the issue directly within xfrm, by deleting the
fallback state as soon as the last user state depending on it has been
deleted. Destruction will still happen when the final reference is
dropped.
A separate lockdep class for the fallback state is required since
we're going to lock x->tunnel while x is locked. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Fix a null-ptr access in the cursor snooper
Check that the resource which is converted to a surface exists before
trying to use the cursor snooper on it.
vmw_cmd_res_check allows explicit invalid (SVGA3D_INVALID_ID) identifiers
because some svga commands accept SVGA3D_INVALID_ID to mean "no surface",
unfortunately functions that accept the actual surfaces as objects might
(and in case of the cursor snooper, do not) be able to handle null
objects. Make sure that we validate not only the identifier (via the
vmw_cmd_res_check) but also check that the actual resource exists before
trying to do something with it.
Fixes unchecked null-ptr reference in the snooping code. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: core: Harden s32ton() against conversion to 0 bits
Testing by the syzbot fuzzer showed that the HID core gets a
shift-out-of-bounds exception when it tries to convert a 32-bit
quantity to a 0-bit quantity. Ideally this should never occur, but
there are buggy devices and some might have a report field with size
set to zero; we shouldn't reject the report or the device just because
of that.
Instead, harden the s32ton() routine so that it returns a reasonable
result instead of crashing when it is called with the number of bits
set to 0 -- the same as what snto32() does. |
| In the Linux kernel, the following vulnerability has been resolved:
page_pool: Fix use-after-free in page_pool_recycle_in_ring
syzbot reported a uaf in page_pool_recycle_in_ring:
BUG: KASAN: slab-use-after-free in lock_release+0x151/0xa30 kernel/locking/lockdep.c:5862
Read of size 8 at addr ffff8880286045a0 by task syz.0.284/6943
CPU: 0 UID: 0 PID: 6943 Comm: syz.0.284 Not tainted 6.13.0-rc3-syzkaller-gdfa94ce54f41 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
lock_release+0x151/0xa30 kernel/locking/lockdep.c:5862
__raw_spin_unlock_bh include/linux/spinlock_api_smp.h:165 [inline]
_raw_spin_unlock_bh+0x1b/0x40 kernel/locking/spinlock.c:210
spin_unlock_bh include/linux/spinlock.h:396 [inline]
ptr_ring_produce_bh include/linux/ptr_ring.h:164 [inline]
page_pool_recycle_in_ring net/core/page_pool.c:707 [inline]
page_pool_put_unrefed_netmem+0x748/0xb00 net/core/page_pool.c:826
page_pool_put_netmem include/net/page_pool/helpers.h:323 [inline]
page_pool_put_full_netmem include/net/page_pool/helpers.h:353 [inline]
napi_pp_put_page+0x149/0x2b0 net/core/skbuff.c:1036
skb_pp_recycle net/core/skbuff.c:1047 [inline]
skb_free_head net/core/skbuff.c:1094 [inline]
skb_release_data+0x6c4/0x8a0 net/core/skbuff.c:1125
skb_release_all net/core/skbuff.c:1190 [inline]
__kfree_skb net/core/skbuff.c:1204 [inline]
sk_skb_reason_drop+0x1c9/0x380 net/core/skbuff.c:1242
kfree_skb_reason include/linux/skbuff.h:1263 [inline]
__skb_queue_purge_reason include/linux/skbuff.h:3343 [inline]
root cause is:
page_pool_recycle_in_ring
ptr_ring_produce
spin_lock(&r->producer_lock);
WRITE_ONCE(r->queue[r->producer++], ptr)
//recycle last page to pool
page_pool_release
page_pool_scrub
page_pool_empty_ring
ptr_ring_consume
page_pool_return_page //release all page
__page_pool_destroy
free_percpu(pool->recycle_stats);
free(pool) //free
spin_unlock(&r->producer_lock); //pool->ring uaf read
recycle_stat_inc(pool, ring);
page_pool can be free while page pool recycle the last page in ring.
Add producer-lock barrier to page_pool_release to prevent the page
pool from being free before all pages have been recycled.
recycle_stat_inc() is empty when CONFIG_PAGE_POOL_STATS is not
enabled, which will trigger Wempty-body build warning. Add definition
for pool stat macro to fix warning. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: core: ufs: Fix a hang in the error handler
ufshcd_err_handling_prepare() calls ufshcd_rpm_get_sync(). The latter
function can only succeed if UFSHCD_EH_IN_PROGRESS is not set because
resuming involves submitting a SCSI command and ufshcd_queuecommand()
returns SCSI_MLQUEUE_HOST_BUSY if UFSHCD_EH_IN_PROGRESS is set. Fix this
hang by setting UFSHCD_EH_IN_PROGRESS after ufshcd_rpm_get_sync() has
been called instead of before.
Backtrace:
__switch_to+0x174/0x338
__schedule+0x600/0x9e4
schedule+0x7c/0xe8
schedule_timeout+0xa4/0x1c8
io_schedule_timeout+0x48/0x70
wait_for_common_io+0xa8/0x160 //waiting on START_STOP
wait_for_completion_io_timeout+0x10/0x20
blk_execute_rq+0xe4/0x1e4
scsi_execute_cmd+0x108/0x244
ufshcd_set_dev_pwr_mode+0xe8/0x250
__ufshcd_wl_resume+0x94/0x354
ufshcd_wl_runtime_resume+0x3c/0x174
scsi_runtime_resume+0x64/0xa4
rpm_resume+0x15c/0xa1c
__pm_runtime_resume+0x4c/0x90 // Runtime resume ongoing
ufshcd_err_handler+0x1a0/0xd08
process_one_work+0x174/0x808
worker_thread+0x15c/0x490
kthread+0xf4/0x1ec
ret_from_fork+0x10/0x20
[ bvanassche: rewrote patch description ] |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/core: Fix "KASAN: slab-use-after-free Read in ib_register_device" problem
Call Trace:
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xc3/0x670 mm/kasan/report.c:521
kasan_report+0xe0/0x110 mm/kasan/report.c:634
strlen+0x93/0xa0 lib/string.c:420
__fortify_strlen include/linux/fortify-string.h:268 [inline]
get_kobj_path_length lib/kobject.c:118 [inline]
kobject_get_path+0x3f/0x2a0 lib/kobject.c:158
kobject_uevent_env+0x289/0x1870 lib/kobject_uevent.c:545
ib_register_device drivers/infiniband/core/device.c:1472 [inline]
ib_register_device+0x8cf/0xe00 drivers/infiniband/core/device.c:1393
rxe_register_device+0x275/0x320 drivers/infiniband/sw/rxe/rxe_verbs.c:1552
rxe_net_add+0x8e/0xe0 drivers/infiniband/sw/rxe/rxe_net.c:550
rxe_newlink+0x70/0x190 drivers/infiniband/sw/rxe/rxe.c:225
nldev_newlink+0x3a3/0x680 drivers/infiniband/core/nldev.c:1796
rdma_nl_rcv_msg+0x387/0x6e0 drivers/infiniband/core/netlink.c:195
rdma_nl_rcv_skb.constprop.0.isra.0+0x2e5/0x450
netlink_unicast_kernel net/netlink/af_netlink.c:1313 [inline]
netlink_unicast+0x53a/0x7f0 net/netlink/af_netlink.c:1339
netlink_sendmsg+0x8d1/0xdd0 net/netlink/af_netlink.c:1883
sock_sendmsg_nosec net/socket.c:712 [inline]
__sock_sendmsg net/socket.c:727 [inline]
____sys_sendmsg+0xa95/0xc70 net/socket.c:2566
___sys_sendmsg+0x134/0x1d0 net/socket.c:2620
__sys_sendmsg+0x16d/0x220 net/socket.c:2652
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x260 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
This problem is similar to the problem that the
commit 1d6a9e7449e2 ("RDMA/core: Fix use-after-free when rename device name")
fixes.
The root cause is: the function ib_device_rename() renames the name with
lock. But in the function kobject_uevent(), this name is accessed without
lock protection at the same time.
The solution is to add the lock protection when this name is accessed in
the function kobject_uevent(). |
| In the Linux kernel, the following vulnerability has been resolved:
cpufreq: scmi: Fix null-ptr-deref in scmi_cpufreq_get_rate()
cpufreq_cpu_get_raw() can return NULL when the target CPU is not present
in the policy->cpus mask. scmi_cpufreq_get_rate() does not check for
this case, which results in a NULL pointer dereference.
Add NULL check after cpufreq_cpu_get_raw() to prevent this issue. |