| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Some HTTP/2 implementations are vulnerable to a header leak, potentially leading to a denial of service. The attacker sends a stream of headers with a 0-length header name and 0-length header value, optionally Huffman encoded into 1-byte or greater headers. Some implementations allocate memory for these headers and keep the allocation alive until the session dies. This can consume excess memory. |
| snappy-java is a fast compressor/decompressor for Java. Due to unchecked multiplications, an integer overflow may occur in versions prior to 1.1.10.1, causing an unrecoverable fatal error.
The function `compress(char[] input)` in the file `Snappy.java` receives an array of characters and compresses it. It does so by multiplying the length by 2 and passing it to the rawCompress` function.
Since the length is not tested, the multiplication by two can cause an integer overflow and become negative. The rawCompress function then uses the received length and passes it to the natively compiled maxCompressedLength function, using the returned value to allocate a byte array.
Since the maxCompressedLength function treats the length as an unsigned integer, it doesn’t care that it is negative, and it returns a valid value, which is casted to a signed integer by the Java engine. If the result is negative, a `java.lang.NegativeArraySizeException` exception will be raised while trying to allocate the array `buf`. On the other side, if the result is positive, the `buf` array will successfully be allocated, but its size might be too small to use for the compression, causing a fatal Access Violation error.
The same issue exists also when using the `compress` functions that receive double, float, int, long and short, each using a different multiplier that may cause the same issue. The issue most likely won’t occur when using a byte array, since creating a byte array of size 0x80000000 (or any other negative value) is impossible in the first place.
Version 1.1.10.1 contains a patch for this issue. |
| snappy-java is a fast compressor/decompressor for Java. Due to unchecked multiplications, an integer overflow may occur in versions prior to 1.1.10.1, causing a fatal error.
The function `shuffle(int[] input)` in the file `BitShuffle.java` receives an array of integers and applies a bit shuffle on it. It does so by multiplying the length by 4 and passing it to the natively compiled shuffle function. Since the length is not tested, the multiplication by four can cause an integer overflow and become a smaller value than the true size, or even zero or negative. In the case of a negative value, a `java.lang.NegativeArraySizeException` exception will raise, which can crash the program. In a case of a value that is zero or too small, the code that afterwards references the shuffled array will assume a bigger size of the array, which might cause exceptions such as `java.lang.ArrayIndexOutOfBoundsException`.
The same issue exists also when using the `shuffle` functions that receive a double, float, long and short, each using a different multiplier that may cause the same issue.
Version 1.1.10.1 contains a patch for this vulnerability. |
| Bouncy Castle For Java before 1.74 is affected by an LDAP injection vulnerability. The vulnerability only affects applications that use an LDAP CertStore from Bouncy Castle to validate X.509 certificates. During the certificate validation process, Bouncy Castle inserts the certificate's Subject Name into an LDAP search filter without any escaping, which leads to an LDAP injection vulnerability. |
| A serialization vulnerability in logback receiver component part of
logback version 1.4.11 allows an attacker to mount a Denial-Of-Service
attack by sending poisoned data.
|
| An issue was discovered in Bouncy Castle Java Cryptography APIs before 1.78. An Ed25519 verification code infinite loop can occur via a crafted signature and public key. |
| An issue was discovered in Bouncy Castle Java TLS API and JSSE Provider before 1.78. Timing-based leakage may occur in RSA based handshakes because of exception processing. |
| The net/http HTTP/1.1 client mishandled the case where a server responds to a request with an "Expect: 100-continue" header with a non-informational (200 or higher) status. This mishandling could leave a client connection in an invalid state, where the next request sent on the connection will fail. An attacker sending a request to a net/http/httputil.ReverseProxy proxy can exploit this mishandling to cause a denial of service by sending "Expect: 100-continue" requests which elicit a non-informational response from the backend. Each such request leaves the proxy with an invalid connection, and causes one subsequent request using that connection to fail. |
| A serialization vulnerability in logback receiver component part of
logback version 1.4.13, 1.3.13 and 1.2.12 allows an attacker to mount a Denial-Of-Service
attack by sending poisoned data.
|
| In Connect2id Nimbus JOSE+JWT before 9.37.2, an attacker can cause a denial of service (resource consumption) via a large JWE p2c header value (aka iteration count) for the PasswordBasedDecrypter (PBKDF2) component. |
| snappy-java is a Java port of the snappy, a fast C++ compresser/decompresser developed by Google. The SnappyInputStream was found to be vulnerable to Denial of Service (DoS) attacks when decompressing data with a too large chunk size. Due to missing upper bound check on chunk length, an unrecoverable fatal error can occur. All versions of snappy-java including the latest released version 1.1.10.3 are vulnerable to this issue. A fix has been introduced in commit `9f8c3cf74` which will be included in the 1.1.10.4 release. Users are advised to upgrade. Users unable to upgrade should only accept compressed data from trusted sources. |
| GzipSource does not handle an exception that might be raised when parsing a malformed gzip buffer. This may lead to denial of service of the Okio client when handling a crafted GZIP archive, by using the GzipSource class.
|
| A compliance problem was found in the Red Hat OpenShift Container Platform. Red Hat discovered that, when FIPS mode was enabled, not all of the cryptographic modules in use were FIPS-validated. |
| jackson-databind through 2.15.2 allows attackers to cause a denial of service or other unspecified impact via a crafted object that uses cyclic dependencies. NOTE: the vendor's perspective is that this is not a valid vulnerability report, because the steps of constructing a cyclic data structure and trying to serialize it cannot be achieved by an external attacker. |
|
In spring AMQP versions 1.0.0 to
2.4.16 and 3.0.0 to 3.0.9 , allowed list patterns for deserializable class
names were added to Spring AMQP, allowing users to lock down deserialization of
data in messages from untrusted sources; however by default, when no allowed
list was provided, all classes could be deserialized.
Specifically, an application is
vulnerable if
* the
SimpleMessageConverter or SerializerMessageConverter is used
* the user
does not configure allowed list patterns
* untrusted
message originators gain permissions to write messages to the RabbitMQ
broker to send malicious content
|
| Deserialization of Untrusted Data vulnerability in Apache Software Foundation Apache Johnzon.
A malicious attacker can craft up some JSON input that uses large numbers (numbers such as 1e20000000) that Apache Johnzon will deserialize into BigDecimal and maybe use numbers too large which may result in a slow conversion (Denial of service risk). Apache Johnzon 1.2.21 mitigates this by setting a scale limit of 1000 (by default) to the BigDecimal.
This issue affects Apache Johnzon: through 1.2.20.
|
| jose4j before v0.9.3 allows attackers to set a low iteration count of 1000 or less. |
| A flaw was found in Red Hat's AMQ-Streams, which ships a version of the OKHttp component with an information disclosure flaw via an exception triggered by a header containing an illegal value. This issue could allow an authenticated attacker to access information outside of their regular permissions. |
| A flaw was found in codehaus-plexus. The org.codehaus.plexus.util.xml.XmlWriterUtil#writeComment fails to sanitize comments for a --> sequence. This issue means that text contained in the command string could be interpreted as XML and allow for XML injection. |
| Apache Commons BCEL has a number of APIs that would normally only allow changing specific class characteristics. However, due to an out-of-bounds writing issue, these APIs can be used to produce arbitrary bytecode. This could be abused in applications that pass attacker-controllable data to those APIs, giving the attacker more control over the resulting bytecode than otherwise expected. Update to Apache Commons BCEL 6.6.0. |