| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
block: Remove queue freezing from several sysfs store callbacks
Freezing the request queue from inside sysfs store callbacks may cause a
deadlock in combination with the dm-multipath driver and the
queue_if_no_path option. Additionally, freezing the request queue slows
down system boot on systems where sysfs attributes are set synchronously.
Fix this by removing the blk_mq_freeze_queue() / blk_mq_unfreeze_queue()
calls from the store callbacks that do not strictly need these callbacks.
Add the __data_racy annotation to request_queue.rq_timeout to suppress
KCSAN data race reports about the rq_timeout reads.
This patch may cause a small delay in applying the new settings.
For all the attributes affected by this patch, I/O will complete
correctly whether the old or the new value of the attribute is used.
This patch affects the following sysfs attributes:
* io_poll_delay
* io_timeout
* nomerges
* read_ahead_kb
* rq_affinity
Here is an example of a deadlock triggered by running test srp/002
if this patch is not applied:
task:multipathd
Call Trace:
<TASK>
__schedule+0x8c1/0x1bf0
schedule+0xdd/0x270
schedule_preempt_disabled+0x1c/0x30
__mutex_lock+0xb89/0x1650
mutex_lock_nested+0x1f/0x30
dm_table_set_restrictions+0x823/0xdf0
__bind+0x166/0x590
dm_swap_table+0x2a7/0x490
do_resume+0x1b1/0x610
dev_suspend+0x55/0x1a0
ctl_ioctl+0x3a5/0x7e0
dm_ctl_ioctl+0x12/0x20
__x64_sys_ioctl+0x127/0x1a0
x64_sys_call+0xe2b/0x17d0
do_syscall_64+0x96/0x3a0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK>
task:(udev-worker)
Call Trace:
<TASK>
__schedule+0x8c1/0x1bf0
schedule+0xdd/0x270
blk_mq_freeze_queue_wait+0xf2/0x140
blk_mq_freeze_queue_nomemsave+0x23/0x30
queue_ra_store+0x14e/0x290
queue_attr_store+0x23e/0x2c0
sysfs_kf_write+0xde/0x140
kernfs_fop_write_iter+0x3b2/0x630
vfs_write+0x4fd/0x1390
ksys_write+0xfd/0x230
__x64_sys_write+0x76/0xc0
x64_sys_call+0x276/0x17d0
do_syscall_64+0x96/0x3a0
entry_SYSCALL_64_after_hwframe+0x4b/0x53
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: af_alg - zero initialize memory allocated via sock_kmalloc
Several crypto user API contexts and requests allocated with
sock_kmalloc() were left uninitialized, relying on callers to
set fields explicitly. This resulted in the use of uninitialized
data in certain error paths or when new fields are added in the
future.
The ACVP patches also contain two user-space interface files:
algif_kpp.c and algif_akcipher.c. These too rely on proper
initialization of their context structures.
A particular issue has been observed with the newly added
'inflight' variable introduced in af_alg_ctx by commit:
67b164a871af ("crypto: af_alg - Disallow multiple in-flight AIO requests")
Because the context is not memset to zero after allocation,
the inflight variable has contained garbage values. As a result,
af_alg_alloc_areq() has incorrectly returned -EBUSY randomly when
the garbage value was interpreted as true:
https://github.com/gregkh/linux/blame/master/crypto/af_alg.c#L1209
The check directly tests ctx->inflight without explicitly
comparing against true/false. Since inflight is only ever set to
true or false later, an uninitialized value has triggered
-EBUSY failures. Zero-initializing memory allocated with
sock_kmalloc() ensures inflight and other fields start in a known
state, removing random issues caused by uninitialized data. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: add VLAN id validation before using
Currently, the VLAN id may be used without validation when
receive a VLAN configuration mailbox from VF. The length of
vlan_del_fail_bmap is BITS_TO_LONGS(VLAN_N_VID). It may cause
out-of-bounds memory access once the VLAN id is bigger than
or equal to VLAN_N_VID.
Therefore, VLAN id needs to be checked to ensure it is within
the range of VLAN_N_VID. |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (w83791d) Convert macros to functions to avoid TOCTOU
The macro FAN_FROM_REG evaluates its arguments multiple times. When used
in lockless contexts involving shared driver data, this leads to
Time-of-Check to Time-of-Use (TOCTOU) race conditions, potentially
causing divide-by-zero errors.
Convert the macro to a static function. This guarantees that arguments
are evaluated only once (pass-by-value), preventing the race
conditions.
Additionally, in store_fan_div, move the calculation of the minimum
limit inside the update lock. This ensures that the read-modify-write
sequence operates on consistent data.
Adhere to the principle of minimal changes by only converting macros
that evaluate arguments multiple times and are used in lockless
contexts. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slub: reset KASAN tag in defer_free() before accessing freed memory
When CONFIG_SLUB_TINY is enabled, kfree_nolock() calls kasan_slab_free()
before defer_free(). On ARM64 with MTE (Memory Tagging Extension),
kasan_slab_free() poisons the memory and changes the tag from the
original (e.g., 0xf3) to a poison tag (0xfe).
When defer_free() then tries to write to the freed object to build the
deferred free list via llist_add(), the pointer still has the old tag,
causing a tag mismatch and triggering a KASAN use-after-free report:
BUG: KASAN: slab-use-after-free in defer_free+0x3c/0xbc mm/slub.c:6537
Write at addr f3f000000854f020 by task kworker/u8:6/983
Pointer tag: [f3], memory tag: [fe]
Fix this by calling kasan_reset_tag() before accessing the freed memory.
This is safe because defer_free() is part of the allocator itself and is
expected to manipulate freed memory for bookkeeping purposes. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: ucsi: Handle incorrect num_connectors capability
The UCSI spec states that the num_connectors field is 7 bits, and the
8th bit is reserved and should be set to zero.
Some buggy FW has been known to set this bit, and it can lead to a
system not booting.
Flag that the FW is not behaving correctly, and auto-fix the value
so that the system boots correctly.
Found on Lenovo P1 G8 during Linux enablement program. The FW will
be fixed, but seemed worth addressing in case it hit platforms that
aren't officially Linux supported. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: ensure node page reads complete before f2fs_put_super() finishes
Xfstests generic/335, generic/336 sometimes crash with the following message:
F2FS-fs (dm-0): detect filesystem reference count leak during umount, type: 9, count: 1
------------[ cut here ]------------
kernel BUG at fs/f2fs/super.c:1939!
Oops: invalid opcode: 0000 [#1] SMP NOPTI
CPU: 1 UID: 0 PID: 609351 Comm: umount Tainted: G W 6.17.0-rc5-xfstests-g9dd1835ecda5 #1 PREEMPT(none)
Tainted: [W]=WARN
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:f2fs_put_super+0x3b3/0x3c0
Call Trace:
<TASK>
generic_shutdown_super+0x7e/0x190
kill_block_super+0x1a/0x40
kill_f2fs_super+0x9d/0x190
deactivate_locked_super+0x30/0xb0
cleanup_mnt+0xba/0x150
task_work_run+0x5c/0xa0
exit_to_user_mode_loop+0xb7/0xc0
do_syscall_64+0x1ae/0x1c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
</TASK>
---[ end trace 0000000000000000 ]---
It appears that sometimes it is possible that f2fs_put_super() is called before
all node page reads are completed.
Adding a call to f2fs_wait_on_all_pages() for F2FS_RD_NODE fixes the problem. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: PM: Fix reverse check in filesystems_freeze_callback()
The freeze_all_ptr check in filesystems_freeze_callback() introduced by
commit a3f8f8662771 ("power: always freeze efivarfs") is reverse which
quite confusingly causes all file systems to be frozen when
filesystem_freeze_enabled is false.
On my systems it causes the WARN_ON_ONCE() in __set_task_frozen() to
trigger, most likely due to an attempt to freeze a file system that is
not ready for that.
Add a logical negation to the check in question to reverse it as
appropriate. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: use global inline_xattr_slab instead of per-sb slab cache
As Hong Yun reported in mailing list:
loop7: detected capacity change from 0 to 131072
------------[ cut here ]------------
kmem_cache of name 'f2fs_xattr_entry-7:7' already exists
WARNING: CPU: 0 PID: 24426 at mm/slab_common.c:110 kmem_cache_sanity_check mm/slab_common.c:109 [inline]
WARNING: CPU: 0 PID: 24426 at mm/slab_common.c:110 __kmem_cache_create_args+0xa6/0x320 mm/slab_common.c:307
CPU: 0 UID: 0 PID: 24426 Comm: syz.7.1370 Not tainted 6.17.0-rc4 #1 PREEMPT(full)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:kmem_cache_sanity_check mm/slab_common.c:109 [inline]
RIP: 0010:__kmem_cache_create_args+0xa6/0x320 mm/slab_common.c:307
Call Trace:
__kmem_cache_create include/linux/slab.h:353 [inline]
f2fs_kmem_cache_create fs/f2fs/f2fs.h:2943 [inline]
f2fs_init_xattr_caches+0xa5/0xe0 fs/f2fs/xattr.c:843
f2fs_fill_super+0x1645/0x2620 fs/f2fs/super.c:4918
get_tree_bdev_flags+0x1fb/0x260 fs/super.c:1692
vfs_get_tree+0x43/0x140 fs/super.c:1815
do_new_mount+0x201/0x550 fs/namespace.c:3808
do_mount fs/namespace.c:4136 [inline]
__do_sys_mount fs/namespace.c:4347 [inline]
__se_sys_mount+0x298/0x2f0 fs/namespace.c:4324
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0x8e/0x3a0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The bug can be reproduced w/ below scripts:
- mount /dev/vdb /mnt1
- mount /dev/vdc /mnt2
- umount /mnt1
- mounnt /dev/vdb /mnt1
The reason is if we created two slab caches, named f2fs_xattr_entry-7:3
and f2fs_xattr_entry-7:7, and they have the same slab size. Actually,
slab system will only create one slab cache core structure which has
slab name of "f2fs_xattr_entry-7:3", and two slab caches share the same
structure and cache address.
So, if we destroy f2fs_xattr_entry-7:3 cache w/ cache address, it will
decrease reference count of slab cache, rather than release slab cache
entirely, since there is one more user has referenced the cache.
Then, if we try to create slab cache w/ name "f2fs_xattr_entry-7:3" again,
slab system will find that there is existed cache which has the same name
and trigger the warning.
Let's changes to use global inline_xattr_slab instead of per-sb slab cache
for fixing. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Fix VM hard lockup after prolonged inactivity with periodic HV timer
When advancing the target expiration for the guest's APIC timer in periodic
mode, set the expiration to "now" if the target expiration is in the past
(similar to what is done in update_target_expiration()). Blindly adding
the period to the previous target expiration can result in KVM generating
a practically unbounded number of hrtimer IRQs due to programming an
expired timer over and over. In extreme scenarios, e.g. if userspace
pauses/suspends a VM for an extended duration, this can even cause hard
lockups in the host.
Currently, the bug only affects Intel CPUs when using the hypervisor timer
(HV timer), a.k.a. the VMX preemption timer. Unlike the software timer,
a.k.a. hrtimer, which KVM keeps running even on exits to userspace, the
HV timer only runs while the guest is active. As a result, if the vCPU
does not run for an extended duration, there will be a huge gap between
the target expiration and the current time the vCPU resumes running.
Because the target expiration is incremented by only one period on each
timer expiration, this leads to a series of timer expirations occurring
rapidly after the vCPU/VM resumes.
More critically, when the vCPU first triggers a periodic HV timer
expiration after resuming, advancing the expiration by only one period
will result in a target expiration in the past. As a result, the delta
may be calculated as a negative value. When the delta is converted into
an absolute value (tscdeadline is an unsigned u64), the resulting value
can overflow what the HV timer is capable of programming. I.e. the large
value will exceed the VMX Preemption Timer's maximum bit width of
cpu_preemption_timer_multi + 32, and thus cause KVM to switch from the
HV timer to the software timer (hrtimers).
After switching to the software timer, periodic timer expiration callbacks
may be executed consecutively within a single clock interrupt handler,
because hrtimers honors KVM's request for an expiration in the past and
immediately re-invokes KVM's callback after reprogramming. And because
the interrupt handler runs with IRQs disabled, restarting KVM's hrtimer
over and over until the target expiration is advanced to "now" can result
in a hard lockup.
E.g. the following hard lockup was triggered in the host when running a
Windows VM (only relevant because it used the APIC timer in periodic mode)
after resuming the VM from a long suspend (in the host).
NMI watchdog: Watchdog detected hard LOCKUP on cpu 45
...
RIP: 0010:advance_periodic_target_expiration+0x4d/0x80 [kvm]
...
RSP: 0018:ff4f88f5d98d8ef0 EFLAGS: 00000046
RAX: fff0103f91be678e RBX: fff0103f91be678e RCX: 00843a7d9e127bcc
RDX: 0000000000000002 RSI: 0052ca4003697505 RDI: ff440d5bfbdbd500
RBP: ff440d5956f99200 R08: ff2ff2a42deb6a84 R09: 000000000002a6c0
R10: 0122d794016332b3 R11: 0000000000000000 R12: ff440db1af39cfc0
R13: ff440db1af39cfc0 R14: ffffffffc0d4a560 R15: ff440db1af39d0f8
FS: 00007f04a6ffd700(0000) GS:ff440db1af380000(0000) knlGS:000000e38a3b8000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000d5651feff8 CR3: 000000684e038002 CR4: 0000000000773ee0
PKRU: 55555554
Call Trace:
<IRQ>
apic_timer_fn+0x31/0x50 [kvm]
__hrtimer_run_queues+0x100/0x280
hrtimer_interrupt+0x100/0x210
? ttwu_do_wakeup+0x19/0x160
smp_apic_timer_interrupt+0x6a/0x130
apic_timer_interrupt+0xf/0x20
</IRQ>
Moreover, if the suspend duration of the virtual machine is not long enough
to trigger a hard lockup in this scenario, since commit 98c25ead5eda
("KVM: VMX: Move preemption timer <=> hrtimer dance to common x86"), KVM
will continue using the software timer until the guest reprograms the APIC
timer in some way. Since the periodic timer does not require frequent APIC
timer register programming, the guest may continue to use the software
timer in
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: adreno: fix deferencing ifpc_reglist when not declared
On plaforms with an a7xx GPU not supporting IFPC, the ifpc_reglist
if still deferenced in a7xx_patch_pwrup_reglist() which causes
a kernel crash:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008
...
pc : a6xx_hw_init+0x155c/0x1e4c [msm]
lr : a6xx_hw_init+0x9a8/0x1e4c [msm]
...
Call trace:
a6xx_hw_init+0x155c/0x1e4c [msm] (P)
msm_gpu_hw_init+0x58/0x88 [msm]
adreno_load_gpu+0x94/0x1fc [msm]
msm_open+0xe4/0xf4 [msm]
drm_file_alloc+0x1a0/0x2e4 [drm]
drm_client_init+0x7c/0x104 [drm]
drm_fbdev_client_setup+0x94/0xcf0 [drm_client_lib]
drm_client_setup+0xb4/0xd8 [drm_client_lib]
msm_drm_kms_post_init+0x2c/0x3c [msm]
msm_drm_init+0x1a4/0x228 [msm]
msm_drm_bind+0x30/0x3c [msm]
...
Check the validity of ifpc_reglist before deferencing the table
to setup the register values.
Patchwork: https://patchwork.freedesktop.org/patch/688944/ |
| In the Linux kernel, the following vulnerability has been resolved:
scs: fix a wrong parameter in __scs_magic
__scs_magic() needs a 'void *' variable, but a 'struct task_struct *' is
given. 'task_scs(tsk)' is the starting address of the task's shadow call
stack, and '__scs_magic(task_scs(tsk))' is the end address of the task's
shadow call stack. Here should be '__scs_magic(task_scs(tsk))'.
The user-visible effect of this bug is that when CONFIG_DEBUG_STACK_USAGE
is enabled, the shadow call stack usage checking function
(scs_check_usage) would scan an incorrect memory range. This could lead
1. **Inaccurate stack usage reporting**: The function would calculate
wrong usage statistics for the shadow call stack, potentially showing
incorrect value in kmsg.
2. **Potential kernel crash**: If the value of __scs_magic(tsk)is
greater than that of __scs_magic(task_scs(tsk)), the for loop may
access unmapped memory, potentially causing a kernel panic. However,
this scenario is unlikely because task_struct is allocated via the slab
allocator (which typically returns lower addresses), while the shadow
call stack returned by task_scs(tsk) is allocated via vmalloc(which
typically returns higher addresses).
However, since this is purely a debugging feature
(CONFIG_DEBUG_STACK_USAGE), normal production systems should be not
unaffected. The bug only impacts developers and testers who are actively
debugging stack usage with this configuration enabled. |
| ITeC ITeCProteccioAppServer contains an unquoted service path vulnerability that allows local attackers to execute code with elevated system privileges. Attackers can insert a malicious executable in the service path to gain elevated access during service restart or system reboot. |
| ImpressCMS 1.4.4 contains a file upload vulnerability with weak extension sanitization that allows attackers to upload potentially malicious files. Attackers can bypass file upload restrictions by using alternative file extensions .php2.php6.php7.phps.pht to execute arbitrary PHP code on the server. |
| Bitrix24 contains an authenticated remote code execution vulnerability that allows logged-in attackers to execute arbitrary system commands through the PHP command line admin interface. Attackers can leverage the vulnerability by sending crafted POST requests to the administrative endpoint with system commands to execute code with the web application's privileges. |
| Enclave is a secure JavaScript sandbox designed for safe AI agent code execution. Prior to 2.7.0, there is a critical sandbox escape vulnerability in enclave-vm that allows untrusted, sandboxed JavaScript code to execute arbitrary code in the host Node.js runtime. When a tool invocation fails, enclave-vm exposes a host-side Error object to sandboxed code. This Error object retains its host realm prototype chain, which can be traversed to reach the host Function constructor. An attacker can intentionally trigger a host error, then climb the prototype chain. Using the host Function constructor, arbitrary JavaScript can be compiled and executed in the host context, fully bypassing the sandbox and granting access to sensitive resources such as process.env, filesystem, and network. This breaks enclave-vm’s core security guarantee of isolating untrusted code. This vulnerability is fixed in 2.7.0. |
| Multi-thread race condition vulnerability in the card framework module.
Impact: Successful exploitation of this vulnerability may affect availability. |
| Multi-thread race condition vulnerability in the camera framework module.
Impact: Successful exploitation of this vulnerability may affect availability. |
| Permission control vulnerability in the Notepad module.
Impact: Successful exploitation of this vulnerability may affect service confidentiality. |
| Multi-thread race condition vulnerability in the camera framework module.
Impact: Successful exploitation of this vulnerability may affect availability. |