Search

Search Results (327931 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-71064 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: hns3: using the num_tqps in the vf driver to apply for resources Currently, hdev->htqp is allocated using hdev->num_tqps, and kinfo->tqp is allocated using kinfo->num_tqps. However, kinfo->num_tqps is set to min(new_tqps, hdev->num_tqps); Therefore, kinfo->num_tqps may be smaller than hdev->num_tqps, which causes some hdev->htqp[i] to remain uninitialized in hclgevf_knic_setup(). Thus, this patch allocates hdev->htqp and kinfo->tqp using hdev->num_tqps, ensuring that the lengths of hdev->htqp and kinfo->tqp are consistent and that all elements are properly initialized.
CVE-2025-71069 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: invalidate dentry cache on failed whiteout creation F2FS can mount filesystems with corrupted directory depth values that get runtime-clamped to MAX_DIR_HASH_DEPTH. When RENAME_WHITEOUT operations are performed on such directories, f2fs_rename performs directory modifications (updating target entry and deleting source entry) before attempting to add the whiteout entry via f2fs_add_link. If f2fs_add_link fails due to the corrupted directory structure, the function returns an error to VFS, but the partial directory modifications have already been committed to disk. VFS assumes the entire rename operation failed and does not update the dentry cache, leaving stale mappings. In the error path, VFS does not call d_move() to update the dentry cache. This results in new_dentry still pointing to the old inode (new_inode) which has already had its i_nlink decremented to zero. The stale cache causes subsequent operations to incorrectly reference the freed inode. This causes subsequent operations to use cached dentry information that no longer matches the on-disk state. When a second rename targets the same entry, VFS attempts to decrement i_nlink on the stale inode, which may already have i_nlink=0, triggering a WARNING in drop_nlink(). Example sequence: 1. First rename (RENAME_WHITEOUT): file2 → file1 - f2fs updates file1 entry on disk (points to inode 8) - f2fs deletes file2 entry on disk - f2fs_add_link(whiteout) fails (corrupted directory) - Returns error to VFS - VFS does not call d_move() due to error - VFS cache still has: file1 → inode 7 (stale!) - inode 7 has i_nlink=0 (already decremented) 2. Second rename: file3 → file1 - VFS uses stale cache: file1 → inode 7 - Tries to drop_nlink on inode 7 (i_nlink already 0) - WARNING in drop_nlink() Fix this by explicitly invalidating old_dentry and new_dentry when f2fs_add_link fails during whiteout creation. This forces VFS to refresh from disk on subsequent operations, ensuring cache consistency even when the rename partially succeeds. Reproducer: 1. Mount F2FS image with corrupted i_current_depth 2. renameat2(file2, file1, RENAME_WHITEOUT) 3. renameat2(file3, file1, 0) 4. System triggers WARNING in drop_nlink()
CVE-2025-71091 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: team: fix check for port enabled in team_queue_override_port_prio_changed() There has been a syzkaller bug reported recently with the following trace: list_del corruption, ffff888058bea080->prev is LIST_POISON2 (dead000000000122) ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:59! Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI CPU: 3 UID: 0 PID: 21246 Comm: syz.0.2928 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:__list_del_entry_valid_or_report+0x13e/0x200 lib/list_debug.c:59 Code: 48 c7 c7 e0 71 f0 8b e8 30 08 ef fc 90 0f 0b 48 89 ef e8 a5 02 55 fd 48 89 ea 48 89 de 48 c7 c7 40 72 f0 8b e8 13 08 ef fc 90 <0f> 0b 48 89 ef e8 88 02 55 fd 48 89 ea 48 b8 00 00 00 00 00 fc ff RSP: 0018:ffffc9000d49f370 EFLAGS: 00010286 RAX: 000000000000004e RBX: ffff888058bea080 RCX: ffffc9002817d000 RDX: 0000000000000000 RSI: ffffffff819becc6 RDI: 0000000000000005 RBP: dead000000000122 R08: 0000000000000005 R09: 0000000000000000 R10: 0000000080000000 R11: 0000000000000001 R12: ffff888039e9c230 R13: ffff888058bea088 R14: ffff888058bea080 R15: ffff888055461480 FS: 00007fbbcfe6f6c0(0000) GS:ffff8880d6d0a000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000110c3afcb0 CR3: 00000000382c7000 CR4: 0000000000352ef0 Call Trace: <TASK> __list_del_entry_valid include/linux/list.h:132 [inline] __list_del_entry include/linux/list.h:223 [inline] list_del_rcu include/linux/rculist.h:178 [inline] __team_queue_override_port_del drivers/net/team/team_core.c:826 [inline] __team_queue_override_port_del drivers/net/team/team_core.c:821 [inline] team_queue_override_port_prio_changed drivers/net/team/team_core.c:883 [inline] team_priority_option_set+0x171/0x2f0 drivers/net/team/team_core.c:1534 team_option_set drivers/net/team/team_core.c:376 [inline] team_nl_options_set_doit+0x8ae/0xe60 drivers/net/team/team_core.c:2653 genl_family_rcv_msg_doit+0x209/0x2f0 net/netlink/genetlink.c:1115 genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline] genl_rcv_msg+0x55c/0x800 net/netlink/genetlink.c:1210 netlink_rcv_skb+0x158/0x420 net/netlink/af_netlink.c:2552 genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219 netlink_unicast_kernel net/netlink/af_netlink.c:1320 [inline] netlink_unicast+0x5aa/0x870 net/netlink/af_netlink.c:1346 netlink_sendmsg+0x8c8/0xdd0 net/netlink/af_netlink.c:1896 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg net/socket.c:742 [inline] ____sys_sendmsg+0xa98/0xc70 net/socket.c:2630 ___sys_sendmsg+0x134/0x1d0 net/socket.c:2684 __sys_sendmsg+0x16d/0x220 net/socket.c:2716 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xcd/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f The problem is in this flow: 1) Port is enabled, queue_id != 0, in qom_list 2) Port gets disabled -> team_port_disable() -> team_queue_override_port_del() -> del (removed from list) 3) Port is disabled, queue_id != 0, not in any list 4) Priority changes -> team_queue_override_port_prio_changed() -> checks: port disabled && queue_id != 0 -> calls del - hits the BUG as it is removed already To fix this, change the check in team_queue_override_port_prio_changed() so it returns early if port is not enabled.
CVE-2025-71092 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: RDMA/bnxt_re: Fix OOB write in bnxt_re_copy_err_stats() Commit ef56081d1864 ("RDMA/bnxt_re: RoCE related hardware counters update") added three new counters and placed them after BNXT_RE_OUT_OF_SEQ_ERR. BNXT_RE_OUT_OF_SEQ_ERR acts as a boundary marker for allocating hardware statistics with different num_counters values on chip_gen_p5_p7 devices. As a result, BNXT_RE_NUM_STD_COUNTERS are used when allocating hw_stats, which leads to an out-of-bounds write in bnxt_re_copy_err_stats(). The counters BNXT_RE_REQ_CQE_ERROR, BNXT_RE_RESP_CQE_ERROR, and BNXT_RE_RESP_REMOTE_ACCESS_ERRS are applicable to generic hardware, not only p5/p7 devices. Fix this by moving these counters before BNXT_RE_OUT_OF_SEQ_ERR so they are included in the generic counter set.
CVE-2025-68775 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/handshake: duplicate handshake cancellations leak socket When a handshake request is cancelled it is removed from the handshake_net->hn_requests list, but it is still present in the handshake_rhashtbl until it is destroyed. If a second cancellation request arrives for the same handshake request, then remove_pending() will return false... and assuming HANDSHAKE_F_REQ_COMPLETED isn't set in req->hr_flags, we'll continue processing through the out_true label, where we put another reference on the sock and a refcount underflow occurs. This can happen for example if a handshake times out - particularly if the SUNRPC client sends the AUTH_TLS probe to the server but doesn't follow it up with the ClientHello due to a problem with tlshd. When the timeout is hit on the server, the server will send a FIN, which triggers a cancellation request via xs_reset_transport(). When the timeout is hit on the client, another cancellation request happens via xs_tls_handshake_sync(). Add a test_and_set_bit(HANDSHAKE_F_REQ_COMPLETED) in the pending cancel path so duplicate cancels can be detected.
CVE-2025-68779 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Avoid unregistering PSP twice PSP is unregistered twice in: _mlx5e_remove -> mlx5e_psp_unregister mlx5e_nic_cleanup -> mlx5e_psp_unregister This leads to a refcount underflow in some conditions: ------------[ cut here ]------------ refcount_t: underflow; use-after-free. WARNING: CPU: 2 PID: 1694 at lib/refcount.c:28 refcount_warn_saturate+0xd8/0xe0 [...] mlx5e_psp_unregister+0x26/0x50 [mlx5_core] mlx5e_nic_cleanup+0x26/0x90 [mlx5_core] mlx5e_remove+0xe6/0x1f0 [mlx5_core] auxiliary_bus_remove+0x18/0x30 device_release_driver_internal+0x194/0x1f0 bus_remove_device+0xc6/0x130 device_del+0x159/0x3c0 mlx5_rescan_drivers_locked+0xbc/0x2a0 [mlx5_core] [...] Do not directly remove psp from the _mlx5e_remove path, the PSP cleanup happens as part of profile cleanup.
CVE-2025-68780 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sched/deadline: only set free_cpus for online runqueues Commit 16b269436b72 ("sched/deadline: Modify cpudl::free_cpus to reflect rd->online") introduced the cpudl_set/clear_freecpu functions to allow the cpu_dl::free_cpus mask to be manipulated by the deadline scheduler class rq_on/offline callbacks so the mask would also reflect this state. Commit 9659e1eeee28 ("sched/deadline: Remove cpu_active_mask from cpudl_find()") removed the check of the cpu_active_mask to save some processing on the premise that the cpudl::free_cpus mask already reflected the runqueue online state. Unfortunately, there are cases where it is possible for the cpudl_clear function to set the free_cpus bit for a CPU when the deadline runqueue is offline. When this occurs while a CPU is connected to the default root domain the flag may retain the bad state after the CPU has been unplugged. Later, a different CPU that is transitioning through the default root domain may push a deadline task to the powered down CPU when cpudl_find sees its free_cpus bit is set. If this happens the task will not have the opportunity to run. One example is outlined here: https://lore.kernel.org/lkml/20250110233010.2339521-1-opendmb@gmail.com Another occurs when the last deadline task is migrated from a CPU that has an offlined runqueue. The dequeue_task member of the deadline scheduler class will eventually call cpudl_clear and set the free_cpus bit for the CPU. This commit modifies the cpudl_clear function to be aware of the online state of the deadline runqueue so that the free_cpus mask can be updated appropriately. It is no longer necessary to manage the mask outside of the cpudl_set/clear functions so the cpudl_set/clear_freecpu functions are removed. In addition, since the free_cpus mask is now only updated under the cpudl lock the code was changed to use the non-atomic __cpumask functions.
CVE-2025-68776 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/hsr: fix NULL pointer dereference in prp_get_untagged_frame() prp_get_untagged_frame() calls __pskb_copy() to create frame->skb_std but doesn't check if the allocation failed. If __pskb_copy() returns NULL, skb_clone() is called with a NULL pointer, causing a crash: Oops: general protection fault, probably for non-canonical address 0xdffffc000000000f: 0000 [#1] SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x0000000000000078-0x000000000000007f] CPU: 0 UID: 0 PID: 5625 Comm: syz.1.18 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:skb_clone+0xd7/0x3a0 net/core/skbuff.c:2041 Code: 03 42 80 3c 20 00 74 08 4c 89 f7 e8 23 29 05 f9 49 83 3e 00 0f 85 a0 01 00 00 e8 94 dd 9d f8 48 8d 6b 7e 49 89 ee 49 c1 ee 03 <43> 0f b6 04 26 84 c0 0f 85 d1 01 00 00 44 0f b6 7d 00 41 83 e7 0c RSP: 0018:ffffc9000d00f200 EFLAGS: 00010207 RAX: ffffffff892235a1 RBX: 0000000000000000 RCX: ffff88803372a480 RDX: 0000000000000000 RSI: 0000000000000820 RDI: 0000000000000000 RBP: 000000000000007e R08: ffffffff8f7d0f77 R09: 1ffffffff1efa1ee R10: dffffc0000000000 R11: fffffbfff1efa1ef R12: dffffc0000000000 R13: 0000000000000820 R14: 000000000000000f R15: ffff88805144cc00 FS: 0000555557f6d500(0000) GS:ffff88808d72f000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000555581d35808 CR3: 000000005040e000 CR4: 0000000000352ef0 Call Trace: <TASK> hsr_forward_do net/hsr/hsr_forward.c:-1 [inline] hsr_forward_skb+0x1013/0x2860 net/hsr/hsr_forward.c:741 hsr_handle_frame+0x6ce/0xa70 net/hsr/hsr_slave.c:84 __netif_receive_skb_core+0x10b9/0x4380 net/core/dev.c:5966 __netif_receive_skb_one_core net/core/dev.c:6077 [inline] __netif_receive_skb+0x72/0x380 net/core/dev.c:6192 netif_receive_skb_internal net/core/dev.c:6278 [inline] netif_receive_skb+0x1cb/0x790 net/core/dev.c:6337 tun_rx_batched+0x1b9/0x730 drivers/net/tun.c:1485 tun_get_user+0x2b65/0x3e90 drivers/net/tun.c:1953 tun_chr_write_iter+0x113/0x200 drivers/net/tun.c:1999 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x5c9/0xb30 fs/read_write.c:686 ksys_write+0x145/0x250 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f0449f8e1ff Code: 89 54 24 18 48 89 74 24 10 89 7c 24 08 e8 f9 92 02 00 48 8b 54 24 18 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 31 44 89 c7 48 89 44 24 08 e8 4c 93 02 00 48 RSP: 002b:00007ffd7ad94c90 EFLAGS: 00000293 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 00007f044a1e5fa0 RCX: 00007f0449f8e1ff RDX: 000000000000003e RSI: 0000200000000500 RDI: 00000000000000c8 RBP: 00007ffd7ad94d20 R08: 0000000000000000 R09: 0000000000000000 R10: 000000000000003e R11: 0000000000000293 R12: 0000000000000001 R13: 00007f044a1e5fa0 R14: 00007f044a1e5fa0 R15: 0000000000000003 </TASK> Add a NULL check immediately after __pskb_copy() to handle allocation failures gracefully.
CVE-2025-68777 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: Input: ti_am335x_tsc - fix off-by-one error in wire_order validation The current validation 'wire_order[i] > ARRAY_SIZE(config_pins)' allows wire_order[i] to equal ARRAY_SIZE(config_pins), which causes out-of-bounds access when used as index in 'config_pins[wire_order[i]]'. Since config_pins has 4 elements (indices 0-3), the valid range for wire_order should be 0-3. Fix the off-by-one error by using >= instead of > in the validation check.
CVE-2025-68781 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: usb: phy: fsl-usb: Fix use-after-free in delayed work during device removal The delayed work item otg_event is initialized in fsl_otg_conf() and scheduled under two conditions: 1. When a host controller binds to the OTG controller. 2. When the USB ID pin state changes (cable insertion/removal). A race condition occurs when the device is removed via fsl_otg_remove(): the fsl_otg instance may be freed while the delayed work is still pending or executing. This leads to use-after-free when the work function fsl_otg_event() accesses the already freed memory. The problematic scenario: (detach thread) | (delayed work) fsl_otg_remove() | kfree(fsl_otg_dev) //FREE| fsl_otg_event() | og = container_of(...) //USE | og-> //USE Fix this by calling disable_delayed_work_sync() in fsl_otg_remove() before deallocating the fsl_otg structure. This ensures the delayed work is properly canceled and completes execution prior to memory deallocation. This bug was identified through static analysis.
CVE-2025-68783 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-mixer: us16x08: validate meter packet indices get_meter_levels_from_urb() parses the 64-byte meter packets sent by the device and fills the per-channel arrays meter_level[], comp_level[] and master_level[] in struct snd_us16x08_meter_store. Currently the function derives the channel index directly from the meter packet (MUB2(meter_urb, s) - 1) and uses it to index those arrays without validating the range. If the packet contains a negative or out-of-range channel number, the driver may write past the end of these arrays. Introduce a local channel variable and validate it before updating the arrays. We reject negative indices, limit meter_level[] and comp_level[] to SND_US16X08_MAX_CHANNELS, and guard master_level[] updates with ARRAY_SIZE(master_level).
CVE-2025-68786 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: skip lock-range check on equal size to avoid size==0 underflow When size equals the current i_size (including 0), the code used to call check_lock_range(filp, i_size, size - 1, WRITE), which computes `size - 1` and can underflow for size==0. Skip the equal case.
CVE-2025-68809 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: vfs: fix race on m_flags in vfs_cache ksmbd maintains delete-on-close and pending-delete state in ksmbd_inode->m_flags. In vfs_cache.c this field is accessed under inconsistent locking: some paths read and modify m_flags under ci->m_lock while others do so without taking the lock at all. Examples: - ksmbd_query_inode_status() and __ksmbd_inode_close() use ci->m_lock when checking or updating m_flags. - ksmbd_inode_pending_delete(), ksmbd_set_inode_pending_delete(), ksmbd_clear_inode_pending_delete() and ksmbd_fd_set_delete_on_close() used to read and modify m_flags without ci->m_lock. This creates a potential data race on m_flags when multiple threads open, close and delete the same file concurrently. In the worst case delete-on-close and pending-delete bits can be lost or observed in an inconsistent state, leading to confusing delete semantics (files that stay on disk after delete-on-close, or files that disappear while still in use). Fix it by: - Making ksmbd_query_inode_status() look at m_flags under ci->m_lock after dropping inode_hash_lock. - Adding ci->m_lock protection to all helpers that read or modify m_flags (ksmbd_inode_pending_delete(), ksmbd_set_inode_pending_delete(), ksmbd_clear_inode_pending_delete(), ksmbd_fd_set_delete_on_close()). - Keeping the existing ci->m_lock protection in __ksmbd_inode_close(), and moving the actual unlink/xattr removal outside the lock. This unifies the locking around m_flags and removes the data race while preserving the existing delete-on-close behaviour.
CVE-2025-68811 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: svcrdma: use rc_pageoff for memcpy byte offset svc_rdma_copy_inline_range added rc_curpage (page index) to the page base instead of the byte offset rc_pageoff. Use rc_pageoff so copies land within the current page. Found by ZeroPath (https://zeropath.com)
CVE-2025-68817 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix use-after-free in ksmbd_tree_connect_put under concurrency Under high concurrency, A tree-connection object (tcon) is freed on a disconnect path while another path still holds a reference and later executes *_put()/write on it.
CVE-2025-68819 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: media: dvb-usb: dtv5100: fix out-of-bounds in dtv5100_i2c_msg() rlen value is a user-controlled value, but dtv5100_i2c_msg() does not check the size of the rlen value. Therefore, if it is set to a value larger than sizeof(st->data), an out-of-bounds vuln occurs for st->data. Therefore, we need to add proper range checking to prevent this vuln.
CVE-2025-68787 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: netrom: Fix memory leak in nr_sendmsg() syzbot reported a memory leak [1]. When function sock_alloc_send_skb() return NULL in nr_output(), the original skb is not freed, which was allocated in nr_sendmsg(). Fix this by freeing it before return. [1] BUG: memory leak unreferenced object 0xffff888129f35500 (size 240): comm "syz.0.17", pid 6119, jiffies 4294944652 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 10 52 28 81 88 ff ff ..........R(.... backtrace (crc 1456a3e4): kmemleak_alloc_recursive include/linux/kmemleak.h:44 [inline] slab_post_alloc_hook mm/slub.c:4983 [inline] slab_alloc_node mm/slub.c:5288 [inline] kmem_cache_alloc_node_noprof+0x36f/0x5e0 mm/slub.c:5340 __alloc_skb+0x203/0x240 net/core/skbuff.c:660 alloc_skb include/linux/skbuff.h:1383 [inline] alloc_skb_with_frags+0x69/0x3f0 net/core/skbuff.c:6671 sock_alloc_send_pskb+0x379/0x3e0 net/core/sock.c:2965 sock_alloc_send_skb include/net/sock.h:1859 [inline] nr_sendmsg+0x287/0x450 net/netrom/af_netrom.c:1105 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg net/socket.c:742 [inline] sock_write_iter+0x293/0x2a0 net/socket.c:1195 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x45d/0x710 fs/read_write.c:686 ksys_write+0x143/0x170 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xa4/0xfa0 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f
CVE-2025-68788 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fsnotify: do not generate ACCESS/MODIFY events on child for special files inotify/fanotify do not allow users with no read access to a file to subscribe to events (e.g. IN_ACCESS/IN_MODIFY), but they do allow the same user to subscribe for watching events on children when the user has access to the parent directory (e.g. /dev). Users with no read access to a file but with read access to its parent directory can still stat the file and see if it was accessed/modified via atime/mtime change. The same is not true for special files (e.g. /dev/null). Users will not generally observe atime/mtime changes when other users read/write to special files, only when someone sets atime/mtime via utimensat(). Align fsnotify events with this stat behavior and do not generate ACCESS/MODIFY events to parent watchers on read/write of special files. The events are still generated to parent watchers on utimensat(). This closes some side-channels that could be possibly used for information exfiltration [1]. [1] https://snee.la/pdf/pubs/file-notification-attacks.pdf
CVE-2025-68792 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tpm2-sessions: Fix out of range indexing in name_size 'name_size' does not have any range checks, and it just directly indexes with TPM_ALG_ID, which could lead into memory corruption at worst. Address the issue by only processing known values and returning -EINVAL for unrecognized values. Make also 'tpm_buf_append_name' and 'tpm_buf_fill_hmac_session' fallible so that errors are detected before causing any spurious TPM traffic. End also the authorization session on failure in both of the functions, as the session state would be then by definition corrupted.
CVE-2025-68793 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix a job->pasid access race in gpu recovery Avoid a possible UAF in GPU recovery due to a race between the sched timeout callback and the tdr work queue. The gpu recovery function calls drm_sched_stop() and later drm_sched_start(). drm_sched_start() restarts the tdr queue which will eventually free the job. If the tdr queue frees the job before time out callback completes, the job will be freed and we'll get a UAF when accessing the pasid. Cache it early to avoid the UAF. Example KASAN trace: [ 493.058141] BUG: KASAN: slab-use-after-free in amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.067530] Read of size 4 at addr ffff88b0ce3f794c by task kworker/u128:1/323 [ 493.074892] [ 493.076485] CPU: 9 UID: 0 PID: 323 Comm: kworker/u128:1 Tainted: G E 6.16.0-1289896.2.zuul.bf4f11df81c1410bbe901c4373305a31 #1 PREEMPT(voluntary) [ 493.076493] Tainted: [E]=UNSIGNED_MODULE [ 493.076495] Hardware name: TYAN B8021G88V2HR-2T/S8021GM2NR-2T, BIOS V1.03.B10 04/01/2019 [ 493.076500] Workqueue: amdgpu-reset-dev drm_sched_job_timedout [gpu_sched] [ 493.076512] Call Trace: [ 493.076515] <TASK> [ 493.076518] dump_stack_lvl+0x64/0x80 [ 493.076529] print_report+0xce/0x630 [ 493.076536] ? _raw_spin_lock_irqsave+0x86/0xd0 [ 493.076541] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 493.076545] ? amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.077253] kasan_report+0xb8/0xf0 [ 493.077258] ? amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.077965] amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.078672] ? __pfx_amdgpu_device_gpu_recover+0x10/0x10 [amdgpu] [ 493.079378] ? amdgpu_coredump+0x1fd/0x4c0 [amdgpu] [ 493.080111] amdgpu_job_timedout+0x642/0x1400 [amdgpu] [ 493.080903] ? pick_task_fair+0x24e/0x330 [ 493.080910] ? __pfx_amdgpu_job_timedout+0x10/0x10 [amdgpu] [ 493.081702] ? _raw_spin_lock+0x75/0xc0 [ 493.081708] ? __pfx__raw_spin_lock+0x10/0x10 [ 493.081712] drm_sched_job_timedout+0x1b0/0x4b0 [gpu_sched] [ 493.081721] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 493.081725] process_one_work+0x679/0xff0 [ 493.081732] worker_thread+0x6ce/0xfd0 [ 493.081736] ? __pfx_worker_thread+0x10/0x10 [ 493.081739] kthread+0x376/0x730 [ 493.081744] ? __pfx_kthread+0x10/0x10 [ 493.081748] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 493.081751] ? __pfx_kthread+0x10/0x10 [ 493.081755] ret_from_fork+0x247/0x330 [ 493.081761] ? __pfx_kthread+0x10/0x10 [ 493.081764] ret_from_fork_asm+0x1a/0x30 [ 493.081771] </TASK> (cherry picked from commit 20880a3fd5dd7bca1a079534cf6596bda92e107d)