| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability was found in Philipinho Simple-PHP-Blog up to 94b5d3e57308bce5dfbc44c3edafa9811893d958. Impacted is an unknown function of the file /login.php. Performing manipulation of the argument Username results in cross site scripting. The attack is possible to be carried out remotely. The exploit has been made public and could be used. This product adopts a rolling release strategy to maintain continuous delivery. Therefore, version details for affected or updated releases cannot be specified. The vendor was contacted early about this disclosure and makes clear that the product is "[f]or educational purposes only". |
| A stored cross-site scripting (XSS) vulnerability exists in the Altium Support Center AddComment endpoint due to missing server-side input sanitization. Although the client interface applies HTML escaping, the backend accepts and stores arbitrary HTML and JavaScript supplied via modified POST requests.
The injected content is rendered verbatim when support cases are viewed by other users, including support staff with elevated privileges, allowing execution of arbitrary JavaScript in the victim’s browser context. |
| Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are 7.1.14 and 7.2.4. Easily exploitable vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in takeover of Oracle VM VirtualBox. CVSS 3.1 Base Score 8.2 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H). |
| Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are 7.1.14 and 7.2.4. Easily exploitable vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in takeover of Oracle VM VirtualBox. CVSS 3.1 Base Score 8.2 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H). |
| Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are 7.1.14 and 7.2.4. Easily exploitable vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Oracle VM VirtualBox accessible data as well as unauthorized access to critical data or complete access to all Oracle VM VirtualBox accessible data and unauthorized ability to cause a partial denial of service (partial DOS) of Oracle VM VirtualBox. CVSS 3.1 Base Score 8.1 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:L). |
| Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). Supported versions that are affected are 7.1.14 and 7.2.4. Easily exploitable vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in takeover of Oracle VM VirtualBox. CVSS 3.1 Base Score 8.2 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:H). |
| Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in WPDeveloper Essential Addons for Elementor essential-addons-for-elementor-lite allows DOM-Based XSS.This issue affects Essential Addons for Elementor: from n/a through <= 6.5.3. |
| Improper Control of Filename for Include/Require Statement in PHP Program ('PHP Remote File Inclusion') vulnerability in Mikado-Themes Lekker lekker allows PHP Local File Inclusion.This issue affects Lekker: from n/a through <= 1.8. |
| Clatter is a no_std compatible, pure Rust implementation of the Noise protocol framework with post-quantum support. Versiosn prior to2.2.0 have a protocol compliance vulnerability. The library allowed post-quantum handshake patterns that violated the PSK validity rule (Noise Protocol Framework Section 9.3). This could allow PSK-derived keys to be used for encryption without proper randomization by self-chosen ephemeral randomness, weakening security guarantees and potentially allowing catastrophic key reuse. Affected default patterns include `noise_pqkk_psk0`, `noise_pqkn_psk0`, `noise_pqnk_psk0`, `noise_pqnn_psk0``, and some hybrid variants. Users of these patterns may have been using handshakes that do not meet the intended security properties. The issue is fully patched and released in Clatter v2.2.0. The fixed version includes runtime checks to detect offending handshake patterns. As a workaround, avoid using offending `*_psk0` variants of post-quantum patterns. Review custom handshake patterns carefully. |
| soroban-fixed-point-math is a fixed-point math library for Soroban smart contacts. In versions 1.3.0 and 1.4.0, the `mulDiv(x, y, z)` function incorrectly handled cases where both the intermediate product $x * y$ and the divisor $z$ were negative. The logic assumed that if the intermediate product was negative, the final result must also be negative, neglecting the sign of $z$. This resulted in rounding being applied in the wrong direction for cases where both $x * y$ and $z$ were negative. The functions most at risk are `fixed_div_floor` and `fixed_div_ceil`, as they often use non-constant numbers as the divisor $z$ in `mulDiv`. This error is present in all signed `FixedPoint` and `SorobanFixedPoint` implementations, including `i64`, `i128`, and `I256`. Versions 1.3.1 and 1.4.1 contain a patch. No known workarounds for this issue are available. |
| PHPUnit is a testing framework for PHP. A vulnerability has been discovered in versions prior to 12.5.8, 11.5.50, 10.5.62, 9.6.33, and 8.5.52 involving unsafe deserialization of code coverage data in PHPT test execution. The vulnerability exists in the `cleanupForCoverage()` method, which deserializes code coverage files without validation, potentially allowing remote code execution if malicious `.coverage` files are present prior to the execution of the PHPT test. The vulnerability occurs when a `.coverage` file, which should not exist before test execution, is deserialized without the `allowed_classes` parameter restriction. An attacker with local file write access can place a malicious serialized object with a `__wakeup()` method into the file system, leading to arbitrary code execution during test runs with code coverage instrumentation enabled. This vulnerability requires local file write access to the location where PHPUnit stores or expects code coverage files for PHPT tests. This can occur through CI/CD pipeline attacks, the local development environment, and/or compromised dependencies. Rather than just silently sanitizing the input via `['allowed_classes' => false]`, the maintainer has chosen to make the anomalous state explicit by treating pre-existing `.coverage` files for PHPT tests as an error condition. Starting in versions in versions 12.5.8, 11.5.50, 10.5.62, 9.6.33, when a `.coverage` file is detected for a PHPT test prior to execution, PHPUnit will emit a clear error message identifying the anomalous state. Organizations can reduce the effective risk of this vulnerability through proper CI/CD configuration, including ephemeral runners, code review enforcement, branch protection, artifact isolation, and access control. |
| Kargo manages and automates the promotion of software artifacts. Prior to versions 1.8.7, 1.7.7, and 1.6.3, a bug was found with authentication checks on the `GetConfig()` API endpoint. This allowed unauthenticated users to access this endpoint by specifying an `Authorization` header with any non-empty `Bearer` token value, regardless of validity. This vulnerability did allow for exfiltration of configuration data such as endpoints for connected Argo CD clusters. This data could allow an attacker to enumerate cluster URLs and namespaces for use in subsequent attacks. Additionally, the same bug affected the `RefreshResource` endpoint. This endpoint does not lead to any information disclosure, but could be used by an unauthenticated attacker to perform a denial-of-service style attack against the Kargo API. `RefreshResource` sets an annotation on specific Kubernetes resources to trigger reconciliations. If run on a constant loop, this could also slow down legitimate requests to the Kubernetes API server. This problem has been patched in Kargo versiosn 1.8.7, 1.7.7, and 1.6.3. There are no workarounds for this issue. |
| gmrtd is a Go library for reading Machine Readable Travel Documents (MRTDs). Prior to version 0.17.2, ReadFile accepts TLVs with lengths that can range up to 4GB, which can cause unconstrained resource consumption in both memory and cpu cycles. ReadFile can consume an extended TLV with lengths well outside what would be available in ICs. It can accept something all the way up to 4GB which would take too many iterations in 256 byte chunks, and would also try to allocate memory that might not be available in constrained environments like phones. Or if an API sends data to ReadFile, the same problem applies. The very small chunked read also locks the goroutine in accepting data for a very large number of iterations. projects using the gmrtd library to read files from NFCs can experience extreme slowdowns or memory consumption. A malicious NFC can just behave like the mock transceiver described above and by just sending dummy bytes as each chunk to be read, can make the receiving thread unresponsive and fill up memory on the host system. Version 0.17.2 patches the issue. |
| Wasmtime is a runtime for WebAssembly. Starting in version 29.0.0 and prior to version 36.0.5, 40.0.3, and 41.0.1, on x86-64 platforms with AVX, Wasmtime's compilation of the `f64.copysign` WebAssembly instruction with Cranelift may load 8 more bytes than is necessary. When signals-based-traps are disabled this can result in a uncaught segfault due to loading from unmapped guard pages. With guard pages disabled it's possible for out-of-sandbox data to be loaded, but unless there is another bug in Cranelift this data is not visible to WebAssembly guests. Wasmtime 36.0.5, 40.0.3, and 41.0.1 have been released to fix this issue. Users are recommended to upgrade to the patched versions of Wasmtime. Other affected versions are not patched and users should updated to supported major version instead. This bug can be worked around by enabling signals-based-traps. While disabling guard pages can be a quick fix in some situations, it's not recommended to disabled guard pages as it is a key defense-in-depth measure of Wasmtime. |
| Issue summary: A type confusion vulnerability exists in the signature
verification of signed PKCS#7 data where an ASN1_TYPE union member is
accessed without first validating the type, causing an invalid or NULL
pointer dereference when processing malformed PKCS#7 data.
Impact summary: An application performing signature verification of PKCS#7
data or calling directly the PKCS7_digest_from_attributes() function can be
caused to dereference an invalid or NULL pointer when reading, resulting in
a Denial of Service.
The function PKCS7_digest_from_attributes() accesses the message digest attribute
value without validating its type. When the type is not V_ASN1_OCTET_STRING,
this results in accessing invalid memory through the ASN1_TYPE union, causing
a crash.
Exploiting this vulnerability requires an attacker to provide a malformed
signed PKCS#7 to an application that verifies it. The impact of the
exploit is just a Denial of Service, the PKCS7 API is legacy and applications
should be using the CMS API instead. For these reasons the issue was
assessed as Low severity.
The FIPS modules in 3.5, 3.4, 3.3 and 3.0 are not affected by this issue,
as the PKCS#7 parsing implementation is outside the OpenSSL FIPS module
boundary.
OpenSSL 3.6, 3.5, 3.4, 3.3, 3.0, 1.1.1 and 1.0.2 are vulnerable to this issue. |
| Kyverno is a policy engine designed for cloud native platform engineering teams. Versions prior to 1.16.3 and 1.15.3 have a critical authorization boundary bypass in namespaced Kyverno Policy apiCall. The resolved `urlPath` is executed using the Kyverno admission controller ServiceAccount, with no enforcement that the request is limited to the policy’s namespace. As a result, any authenticated user with permission to create a namespaced Policy can cause Kyverno to perform Kubernetes API requests using Kyverno’s admission controller identity, targeting any API path allowed by that ServiceAccount’s RBAC. This breaks namespace isolation by enabling cross-namespace reads (for example, ConfigMaps and, where permitted, Secrets) and allows cluster-scoped or cross-namespace writes (for example, creating ClusterPolicies) by controlling the urlPath through context variable substitution. Versions 1.16.3 and 1.15.3 contain a patch for the vulnerability. |
| Issue summary: Processing a malformed PKCS#12 file can trigger a NULL pointer
dereference in the PKCS12_item_decrypt_d2i_ex() function.
Impact summary: A NULL pointer dereference can trigger a crash which leads to
Denial of Service for an application processing PKCS#12 files.
The PKCS12_item_decrypt_d2i_ex() function does not check whether the oct
parameter is NULL before dereferencing it. When called from
PKCS12_unpack_p7encdata() with a malformed PKCS#12 file, this parameter can
be NULL, causing a crash. The vulnerability is limited to Denial of Service
and cannot be escalated to achieve code execution or memory disclosure.
Exploiting this issue requires an attacker to provide a malformed PKCS#12 file
to an application that processes it. For that reason the issue was assessed as
Low severity according to our Security Policy.
The FIPS modules in 3.6, 3.5, 3.4, 3.3 and 3.0 are not affected by this issue,
as the PKCS#12 implementation is outside the OpenSSL FIPS module boundary.
OpenSSL 3.6, 3.5, 3.4, 3.3, 3.0, 1.1.1 and 1.0.2 are vulnerable to this issue. |
| Issue summary: Calling PKCS12_get_friendlyname() function on a maliciously
crafted PKCS#12 file with a BMPString (UTF-16BE) friendly name containing
non-ASCII BMP code point can trigger a one byte write before the allocated
buffer.
Impact summary: The out-of-bounds write can cause a memory corruption
which can have various consequences including a Denial of Service.
The OPENSSL_uni2utf8() function performs a two-pass conversion of a PKCS#12
BMPString (UTF-16BE) to UTF-8. In the second pass, when emitting UTF-8 bytes,
the helper function bmp_to_utf8() incorrectly forwards the remaining UTF-16
source byte count as the destination buffer capacity to UTF8_putc(). For BMP
code points above U+07FF, UTF-8 requires three bytes, but the forwarded
capacity can be just two bytes. UTF8_putc() then returns -1, and this negative
value is added to the output length without validation, causing the
length to become negative. The subsequent trailing NUL byte is then written
at a negative offset, causing write outside of heap allocated buffer.
The vulnerability is reachable via the public PKCS12_get_friendlyname() API
when parsing attacker-controlled PKCS#12 files. While PKCS12_parse() uses a
different code path that avoids this issue, PKCS12_get_friendlyname() directly
invokes the vulnerable function. Exploitation requires an attacker to provide
a malicious PKCS#12 file to be parsed by the application and the attacker
can just trigger a one zero byte write before the allocated buffer.
For that reason the issue was assessed as Low severity according to our
Security Policy.
The FIPS modules in 3.6, 3.5, 3.4, 3.3 and 3.0 are not affected by this issue,
as the PKCS#12 implementation is outside the OpenSSL FIPS module boundary.
OpenSSL 3.6, 3.5, 3.4, 3.3, 3.0 and 1.1.1 are vulnerable to this issue.
OpenSSL 1.0.2 is not affected by this issue. |
| Issue summary: When using the low-level OCB API directly with AES-NI or<br>other hardware-accelerated code paths, inputs whose length is not a multiple<br>of 16 bytes can leave the final partial block unencrypted and unauthenticated.<br><br>Impact summary: The trailing 1-15 bytes of a message may be exposed in<br>cleartext on encryption and are not covered by the authentication tag,<br>allowing an attacker to read or tamper with those bytes without detection.<br><br>The low-level OCB encrypt and decrypt routines in the hardware-accelerated<br>stream path process full 16-byte blocks but do not advance the input/output<br>pointers. The subsequent tail-handling code then operates on the original<br>base pointers, effectively reprocessing the beginning of the buffer while<br>leaving the actual trailing bytes unprocessed. The authentication checksum<br>also excludes the true tail bytes.<br><br>However, typical OpenSSL consumers using EVP are not affected because the<br>higher-level EVP and provider OCB implementations split inputs so that full<br>blocks and trailing partial blocks are processed in separate calls, avoiding<br>the problematic code path. Additionally, TLS does not use OCB ciphersuites.<br>The vulnerability only affects applications that call the low-level<br>CRYPTO_ocb128_encrypt() or CRYPTO_ocb128_decrypt() functions directly with<br>non-block-aligned lengths in a single call on hardware-accelerated builds.<br>For these reasons the issue was assessed as Low severity.<br><br>The FIPS modules in 3.6, 3.5, 3.4, 3.3, 3.2, 3.1 and 3.0 are not affected<br>by this issue, as OCB mode is not a FIPS-approved algorithm.<br><br>OpenSSL 3.6, 3.5, 3.4, 3.3, 3.0 and 1.1.1 are vulnerable to this issue.<br><br>OpenSSL 1.0.2 is not affected by this issue. |
| xrdp is an open source RDP server. xrdp before v0.10.5 contains an unauthenticated stack-based buffer overflow vulnerability. The issue stems from improper bounds checking when processing user domain information during the connection sequence. If exploited, the vulnerability could allow remote attackers to execute arbitrary code on the target system. The vulnerability allows an attacker to overwrite the stack buffer and the return address, which could theoretically be used to redirect the execution flow. The impact of this vulnerability is lessened if a compiler flag has been used to build the xrdp executable with stack canary protection. If this is the case, a second vulnerability would need to be used to leak the stack canary value. Upgrade to version 0.10.5 to receive a patch. Additionally, do not rely on stack canary protection on production systems. |