| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/iommu: Fix notifiers being shared by PCI and VIO buses
fail_iommu_setup() registers the fail_iommu_bus_notifier struct to both
PCI and VIO buses. struct notifier_block is a linked list node, so this
causes any notifiers later registered to either bus type to also be
registered to the other since they share the same node.
This causes issues in (at least) the vgaarb code, which registers a
notifier for PCI buses. pci_notify() ends up being called on a vio
device, converted with to_pci_dev() even though it's not a PCI device,
and finally makes a bad access in vga_arbiter_add_pci_device() as
discovered with KASAN:
BUG: KASAN: slab-out-of-bounds in vga_arbiter_add_pci_device+0x60/0xe00
Read of size 4 at addr c000000264c26fdc by task swapper/0/1
Call Trace:
dump_stack_lvl+0x1bc/0x2b8 (unreliable)
print_report+0x3f4/0xc60
kasan_report+0x244/0x698
__asan_load4+0xe8/0x250
vga_arbiter_add_pci_device+0x60/0xe00
pci_notify+0x88/0x444
notifier_call_chain+0x104/0x320
blocking_notifier_call_chain+0xa0/0x140
device_add+0xac8/0x1d30
device_register+0x58/0x80
vio_register_device_node+0x9ac/0xce0
vio_bus_scan_register_devices+0xc4/0x13c
__machine_initcall_pseries_vio_device_init+0x94/0xf0
do_one_initcall+0x12c/0xaa8
kernel_init_freeable+0xa48/0xba8
kernel_init+0x64/0x400
ret_from_kernel_thread+0x5c/0x64
Fix this by creating separate notifier_block structs for each bus type.
[mpe: Add #ifdef to fix CONFIG_IBMVIO=n build] |
| In the Linux kernel, the following vulnerability has been resolved:
soundwire: fix enumeration completion
The soundwire subsystem uses two completion structures that allow
drivers to wait for soundwire device to become enumerated on the bus and
initialised by their drivers, respectively.
The code implementing the signalling is currently broken as it does not
signal all current and future waiters and also uses the wrong
reinitialisation function, which can potentially lead to memory
corruption if there are still waiters on the queue.
Not signalling future waiters specifically breaks sound card probe
deferrals as codec drivers can not tell that the soundwire device is
already attached when being reprobed. Some codec runtime PM
implementations suffer from similar problems as waiting for enumeration
during resume can also timeout despite the device already having been
enumerated. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: stm32-pwr: fix of_iomap leak
Smatch reports:
drivers/regulator/stm32-pwr.c:166 stm32_pwr_regulator_probe() warn:
'base' from of_iomap() not released on lines: 151,166.
In stm32_pwr_regulator_probe(), base is not released
when devm_kzalloc() fails to allocate memory or
devm_regulator_register() fails to register a new regulator device,
which may cause a leak.
To fix this issue, replace of_iomap() with
devm_platform_ioremap_resource(). devm_platform_ioremap_resource()
is a specialized function for platform devices.
It allows 'base' to be automatically released whether the probe
function succeeds or fails.
Besides, use IS_ERR(base) instead of !base
as the return value of devm_platform_ioremap_resource()
can either be a pointer to the remapped memory or
an ERR_PTR() encoded error code if the operation fails. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qedi: Fix use after free bug in qedi_remove()
In qedi_probe() we call __qedi_probe() which initializes
&qedi->recovery_work with qedi_recovery_handler() and
&qedi->board_disable_work with qedi_board_disable_work().
When qedi_schedule_recovery_handler() is called, schedule_delayed_work()
will finally start the work.
In qedi_remove(), which is called to remove the driver, the following
sequence may be observed:
Fix this by finishing the work before cleanup in qedi_remove().
CPU0 CPU1
|qedi_recovery_handler
qedi_remove |
__qedi_remove |
iscsi_host_free |
scsi_host_put |
//free shost |
|iscsi_host_for_each_session
|//use qedi->shost
Cancel recovery_work and board_disable_work in __qedi_remove(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: nsh: Use correct mac_offset to unwind gso skb in nsh_gso_segment()
As the call trace shows, skb_panic was caused by wrong skb->mac_header
in nsh_gso_segment():
invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 3 PID: 2737 Comm: syz Not tainted 6.3.0-next-20230505 #1
RIP: 0010:skb_panic+0xda/0xe0
call Trace:
skb_push+0x91/0xa0
nsh_gso_segment+0x4f3/0x570
skb_mac_gso_segment+0x19e/0x270
__skb_gso_segment+0x1e8/0x3c0
validate_xmit_skb+0x452/0x890
validate_xmit_skb_list+0x99/0xd0
sch_direct_xmit+0x294/0x7c0
__dev_queue_xmit+0x16f0/0x1d70
packet_xmit+0x185/0x210
packet_snd+0xc15/0x1170
packet_sendmsg+0x7b/0xa0
sock_sendmsg+0x14f/0x160
The root cause is:
nsh_gso_segment() use skb->network_header - nhoff to reset mac_header
in skb_gso_error_unwind() if inner-layer protocol gso fails.
However, skb->network_header may be reset by inner-layer protocol
gso function e.g. mpls_gso_segment. skb->mac_header reset by the
inaccurate network_header will be larger than skb headroom.
nsh_gso_segment
nhoff = skb->network_header - skb->mac_header;
__skb_pull(skb,nsh_len)
skb_mac_gso_segment
mpls_gso_segment
skb_reset_network_header(skb);//skb->network_header+=nsh_len
return -EINVAL;
skb_gso_error_unwind
skb_push(skb, nsh_len);
skb->mac_header = skb->network_header - nhoff;
// skb->mac_header > skb->headroom, cause skb_push panic
Use correct mac_offset to restore mac_header and get rid of nhoff. |
| In the Linux kernel, the following vulnerability has been resolved:
pcmcia: rsrc_nonstatic: Fix memory leak in nonstatic_release_resource_db()
When nonstatic_release_resource_db() frees all resources associated
with an PCMCIA socket, it forgets to free socket_data too, causing
a memory leak observable with kmemleak:
unreferenced object 0xc28d1000 (size 64):
comm "systemd-udevd", pid 297, jiffies 4294898478 (age 194.484s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 f0 85 0e c3 00 00 00 00 ................
00 00 00 00 0c 10 8d c2 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffda4245>] __kmem_cache_alloc_node+0x2d7/0x4a0
[<7e51f0c8>] kmalloc_trace+0x31/0xa4
[<d52b4ca0>] nonstatic_init+0x24/0x1a4 [pcmcia_rsrc]
[<a2f13e08>] pcmcia_register_socket+0x200/0x35c [pcmcia_core]
[<a728be1b>] yenta_probe+0x4d8/0xa70 [yenta_socket]
[<c48fac39>] pci_device_probe+0x99/0x194
[<84b7c690>] really_probe+0x181/0x45c
[<8060fe6e>] __driver_probe_device+0x75/0x1f4
[<b9b76f43>] driver_probe_device+0x28/0xac
[<648b766f>] __driver_attach+0xeb/0x1e4
[<6e9659eb>] bus_for_each_dev+0x61/0xb4
[<25a669f3>] driver_attach+0x1e/0x28
[<d8671d6b>] bus_add_driver+0x102/0x20c
[<df0d323c>] driver_register+0x5b/0x120
[<942cd8a4>] __pci_register_driver+0x44/0x4c
[<e536027e>] __UNIQUE_ID___addressable_cleanup_module188+0x1c/0xfffff000 [iTCO_vendor_support]
Fix this by freeing socket_data too.
Tested on a Acer Travelmate 4002WLMi by manually binding/unbinding
the yenta_cardbus driver (yenta_socket). |
| In the Linux kernel, the following vulnerability has been resolved:
serial: sc16is7xx: setup GPIO controller later in probe
The GPIO controller component of the sc16is7xx driver is setup too
early, which can result in a race condition where another device tries
to utilise the GPIO lines before the sc16is7xx device has finished
initialising.
This issue manifests itself as an Oops when the GPIO lines are configured:
Unable to handle kernel read from unreadable memory at virtual address
...
pc : sc16is7xx_gpio_direction_output+0x68/0x108 [sc16is7xx]
lr : sc16is7xx_gpio_direction_output+0x4c/0x108 [sc16is7xx]
...
Call trace:
sc16is7xx_gpio_direction_output+0x68/0x108 [sc16is7xx]
gpiod_direction_output_raw_commit+0x64/0x318
gpiod_direction_output+0xb0/0x170
create_gpio_led+0xec/0x198
gpio_led_probe+0x16c/0x4f0
platform_drv_probe+0x5c/0xb0
really_probe+0xe8/0x448
driver_probe_device+0xe8/0x138
__device_attach_driver+0x94/0x118
bus_for_each_drv+0x8c/0xe0
__device_attach+0x100/0x1b8
device_initial_probe+0x28/0x38
bus_probe_device+0xa4/0xb0
deferred_probe_work_func+0x90/0xe0
process_one_work+0x1c4/0x480
worker_thread+0x54/0x430
kthread+0x138/0x150
ret_from_fork+0x10/0x1c
This patch moves the setup of the GPIO controller functions to later in the
probe function, ensuring the sc16is7xx device has already finished
initialising by the time other devices try to make use of the GPIO lines.
The error handling has also been reordered to reflect the new
initialisation order. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to drop all dirty pages during umount() if cp_error is set
xfstest generic/361 reports a bug as below:
f2fs_bug_on(sbi, sbi->fsync_node_num);
kernel BUG at fs/f2fs/super.c:1627!
RIP: 0010:f2fs_put_super+0x3a8/0x3b0
Call Trace:
generic_shutdown_super+0x8c/0x1b0
kill_block_super+0x2b/0x60
kill_f2fs_super+0x87/0x110
deactivate_locked_super+0x39/0x80
deactivate_super+0x46/0x50
cleanup_mnt+0x109/0x170
__cleanup_mnt+0x16/0x20
task_work_run+0x65/0xa0
exit_to_user_mode_prepare+0x175/0x190
syscall_exit_to_user_mode+0x25/0x50
do_syscall_64+0x4c/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
During umount(), if cp_error is set, f2fs_wait_on_all_pages() should
not stop waiting all F2FS_WB_CP_DATA pages to be writebacked, otherwise,
fsync_node_num can be non-zero after f2fs_wait_on_all_pages() causing
this bug.
In this case, to avoid deadloop in f2fs_wait_on_all_pages(), it needs
to drop all dirty pages rather than redirtying them. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: safexcel - Cleanup ring IRQ workqueues on load failure
A failure loading the safexcel driver results in the following warning
on boot, because the IRQ affinity has not been correctly cleaned up.
Ensure we clean up the affinity and workqueues on a failure to load the
driver.
crypto-safexcel: probe of f2800000.crypto failed with error -2
------------[ cut here ]------------
WARNING: CPU: 1 PID: 232 at kernel/irq/manage.c:1913 free_irq+0x300/0x340
Modules linked in: hwmon mdio_i2c crypto_safexcel(+) md5 sha256_generic libsha256 authenc libdes omap_rng rng_core nft_masq nft_nat nft_chain_nat nf_nat nft_ct nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nf_tables libcrc32c nfnetlink fuse autofs4
CPU: 1 PID: 232 Comm: systemd-udevd Tainted: G W 6.1.6-00002-g9d4898824677 #3
Hardware name: MikroTik RB5009 (DT)
pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : free_irq+0x300/0x340
lr : free_irq+0x2e0/0x340
sp : ffff800008fa3890
x29: ffff800008fa3890 x28: 0000000000000000 x27: 0000000000000000
x26: ffff8000008e6dc0 x25: ffff000009034cac x24: ffff000009034d50
x23: 0000000000000000 x22: 000000000000004a x21: ffff0000093e0d80
x20: ffff000009034c00 x19: ffff00000615fc00 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 000075f5c1584c5e
x14: 0000000000000017 x13: 0000000000000000 x12: 0000000000000040
x11: ffff000000579b60 x10: ffff000000579b62 x9 : ffff800008bbe370
x8 : ffff000000579dd0 x7 : 0000000000000000 x6 : ffff000000579e18
x5 : ffff000000579da8 x4 : ffff800008ca0000 x3 : ffff800008ca0188
x2 : 0000000013033204 x1 : ffff000009034c00 x0 : ffff8000087eadf0
Call trace:
free_irq+0x300/0x340
devm_irq_release+0x14/0x20
devres_release_all+0xa0/0x100
device_unbind_cleanup+0x14/0x60
really_probe+0x198/0x2d4
__driver_probe_device+0x74/0xdc
driver_probe_device+0x3c/0x110
__driver_attach+0x8c/0x190
bus_for_each_dev+0x6c/0xc0
driver_attach+0x20/0x30
bus_add_driver+0x148/0x1fc
driver_register+0x74/0x120
__platform_driver_register+0x24/0x30
safexcel_init+0x48/0x1000 [crypto_safexcel]
do_one_initcall+0x4c/0x1b0
do_init_module+0x44/0x1cc
load_module+0x1724/0x1be4
__do_sys_finit_module+0xbc/0x110
__arm64_sys_finit_module+0x1c/0x24
invoke_syscall+0x44/0x110
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x20/0x80
el0_svc+0x14/0x4c
el0t_64_sync_handler+0xb0/0xb4
el0t_64_sync+0x148/0x14c
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: Add validation for lmac type
Upon physical link change, firmware reports to the kernel about the
change along with the details like speed, lmac_type_id, etc.
Kernel derives lmac_type based on lmac_type_id received from firmware.
In a few scenarios, firmware returns an invalid lmac_type_id, which
is resulting in below kernel panic. This patch adds the missing
validation of the lmac_type_id field.
Internal error: Oops: 96000005 [#1] PREEMPT SMP
[ 35.321595] Modules linked in:
[ 35.328982] CPU: 0 PID: 31 Comm: kworker/0:1 Not tainted
5.4.210-g2e3169d8e1bc-dirty #17
[ 35.337014] Hardware name: Marvell CN103XX board (DT)
[ 35.344297] Workqueue: events work_for_cpu_fn
[ 35.352730] pstate: 40400089 (nZcv daIf +PAN -UAO)
[ 35.360267] pc : strncpy+0x10/0x30
[ 35.366595] lr : cgx_link_change_handler+0x90/0x180 |
| In the Linux kernel, the following vulnerability has been resolved:
nbd: defer config unlock in nbd_genl_connect
There is one use-after-free warning when running NBD_CMD_CONNECT and
NBD_CLEAR_SOCK:
nbd_genl_connect
nbd_alloc_and_init_config // config_refs=1
nbd_start_device // config_refs=2
set NBD_RT_HAS_CONFIG_REF open nbd // config_refs=3
recv_work done // config_refs=2
NBD_CLEAR_SOCK // config_refs=1
close nbd // config_refs=0
refcount_inc -> uaf
------------[ cut here ]------------
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 24 PID: 1014 at lib/refcount.c:25 refcount_warn_saturate+0x12e/0x290
nbd_genl_connect+0x16d0/0x1ab0
genl_family_rcv_msg_doit+0x1f3/0x310
genl_rcv_msg+0x44a/0x790
The issue can be easily reproduced by adding a small delay before
refcount_inc(&nbd->config_refs) in nbd_genl_connect():
mutex_unlock(&nbd->config_lock);
if (!ret) {
set_bit(NBD_RT_HAS_CONFIG_REF, &config->runtime_flags);
+ printk("before sleep\n");
+ mdelay(5 * 1000);
+ printk("after sleep\n");
refcount_inc(&nbd->config_refs);
nbd_connect_reply(info, nbd->index);
} |
| In the Linux kernel, the following vulnerability has been resolved:
md: init bioset in mddev_init
IO operations may be needed before md_run(), such as updating metadata
after writing sysfs. Without bioset, this triggers a NULL pointer
dereference as below:
BUG: kernel NULL pointer dereference, address: 0000000000000020
Call Trace:
md_update_sb+0x658/0xe00
new_level_store+0xc5/0x120
md_attr_store+0xc9/0x1e0
sysfs_kf_write+0x6f/0xa0
kernfs_fop_write_iter+0x141/0x2a0
vfs_write+0x1fc/0x5a0
ksys_write+0x79/0x180
__x64_sys_write+0x1d/0x30
x64_sys_call+0x2818/0x2880
do_syscall_64+0xa9/0x580
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Reproducer
```
mdadm -CR /dev/md0 -l1 -n2 /dev/sd[cd]
echo inactive > /sys/block/md0/md/array_state
echo 10 > /sys/block/md0/md/new_level
```
mddev_init() can only be called once per mddev, no need to test if bioset
has been initialized anymore. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: smartpqi: Fix device resources accessed after device removal
Correct possible race conditions during device removal.
Previously, a scheduled work item to reset a LUN could still execute
after the device was removed, leading to use-after-free and other
resource access issues.
This race condition occurs because the abort handler may schedule a LUN
reset concurrently with device removal via sdev_destroy(), leading to
use-after-free and improper access to freed resources.
- Check in the device reset handler if the device is still present in
the controller's SCSI device list before running; if not, the reset
is skipped.
- Cancel any pending TMF work that has not started in sdev_destroy().
- Ensure device freeing in sdev_destroy() is done while holding the
LUN reset mutex to avoid races with ongoing resets. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix null deref on srq->rq.queue after resize failure
A NULL pointer dereference can occur in rxe_srq_chk_attr() when
ibv_modify_srq() is invoked twice in succession under certain error
conditions. The first call may fail in rxe_queue_resize(), which leads
rxe_srq_from_attr() to set srq->rq.queue = NULL. The second call then
triggers a crash (null deref) when accessing
srq->rq.queue->buf->index_mask.
Call Trace:
<TASK>
rxe_modify_srq+0x170/0x480 [rdma_rxe]
? __pfx_rxe_modify_srq+0x10/0x10 [rdma_rxe]
? uverbs_try_lock_object+0x4f/0xa0 [ib_uverbs]
? rdma_lookup_get_uobject+0x1f0/0x380 [ib_uverbs]
ib_uverbs_modify_srq+0x204/0x290 [ib_uverbs]
? __pfx_ib_uverbs_modify_srq+0x10/0x10 [ib_uverbs]
? tryinc_node_nr_active+0xe6/0x150
? uverbs_fill_udata+0xed/0x4f0 [ib_uverbs]
ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x2c0/0x470 [ib_uverbs]
? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs]
? uverbs_fill_udata+0xed/0x4f0 [ib_uverbs]
ib_uverbs_run_method+0x55a/0x6e0 [ib_uverbs]
? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs]
ib_uverbs_cmd_verbs+0x54d/0x800 [ib_uverbs]
? __pfx_ib_uverbs_cmd_verbs+0x10/0x10 [ib_uverbs]
? __pfx___raw_spin_lock_irqsave+0x10/0x10
? __pfx_do_vfs_ioctl+0x10/0x10
? ioctl_has_perm.constprop.0.isra.0+0x2c7/0x4c0
? __pfx_ioctl_has_perm.constprop.0.isra.0+0x10/0x10
ib_uverbs_ioctl+0x13e/0x220 [ib_uverbs]
? __pfx_ib_uverbs_ioctl+0x10/0x10 [ib_uverbs]
__x64_sys_ioctl+0x138/0x1c0
do_syscall_64+0x82/0x250
? fdget_pos+0x58/0x4c0
? ksys_write+0xf3/0x1c0
? __pfx_ksys_write+0x10/0x10
? do_syscall_64+0xc8/0x250
? __pfx_vm_mmap_pgoff+0x10/0x10
? fget+0x173/0x230
? fput+0x2a/0x80
? ksys_mmap_pgoff+0x224/0x4c0
? do_syscall_64+0xc8/0x250
? do_user_addr_fault+0x37b/0xfe0
? clear_bhb_loop+0x50/0xa0
? clear_bhb_loop+0x50/0xa0
? clear_bhb_loop+0x50/0xa0
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix peer HE MCS assignment
In ath11k_wmi_send_peer_assoc_cmd(), peer's transmit MCS is sent to
firmware as receive MCS while peer's receive MCS sent as transmit MCS,
which goes against firmwire's definition.
While connecting to a misbehaved AP that advertises 0xffff (meaning not
supported) for 160 MHz transmit MCS map, firmware crashes due to 0xffff
is assigned to he_mcs->rx_mcs_set field.
Ext Tag: HE Capabilities
[...]
Supported HE-MCS and NSS Set
[...]
Rx and Tx MCS Maps 160 MHz
[...]
Tx HE-MCS Map 160 MHz: 0xffff
Swap the assignment to fix this issue.
As the HE rate control mask is meant to limit our own transmit MCS, it
needs to go via he_mcs->rx_mcs_set field. With the aforementioned swapping
done, change is needed as well to apply it to the peer's receive MCS.
Tested-on: WCN6855 hw2.1 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.41
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: firewire-digi00x: prevent potential use after free
This code was supposed to return an error code if init_stream()
failed, but it instead freed dg00x->rx_stream and returned success.
This potentially leads to a use after free. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: visconti: Fix memory leak in visconti_register_pll()
@pll->rate_table has allocated memory by kmemdup(), if clk_hw_register()
fails, it should be freed, otherwise it will cause memory leak issue,
this patch fixes it. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: qcom-adm: fix wrong calling convention for prep_slave_sg
The calling convention for pre_slave_sg is to return NULL on error and
provide an error log to the system. Qcom-adm instead provide error
pointer when an error occur. This indirectly cause kernel panic for
example for the nandc driver that checks only if the pointer returned by
device_prep_slave_sg is not NULL. Returning an error pointer makes nandc
think the device_prep_slave_sg function correctly completed and makes
the kernel panics later in the code.
While nandc is the one that makes the kernel crash, it was pointed out
that the real problem is qcom-adm not following calling convention for
that function.
To fix this, drop returning error pointer and return NULL with an error
log. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/xen: Fix memory leak in xen_init_lock_cpu()
In xen_init_lock_cpu(), the @name has allocated new string by kasprintf(),
if bind_ipi_to_irqhandler() fails, it should be freed, otherwise may lead
to a memory leak issue, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ar5523: Fix use-after-free on ar5523_cmd() timed out
syzkaller reported use-after-free with the stack trace like below [1]:
[ 38.960489][ C3] ==================================================================
[ 38.963216][ C3] BUG: KASAN: use-after-free in ar5523_cmd_tx_cb+0x220/0x240
[ 38.964950][ C3] Read of size 8 at addr ffff888048e03450 by task swapper/3/0
[ 38.966363][ C3]
[ 38.967053][ C3] CPU: 3 PID: 0 Comm: swapper/3 Not tainted 6.0.0-09039-ga6afa4199d3d-dirty #18
[ 38.968464][ C3] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014
[ 38.969959][ C3] Call Trace:
[ 38.970841][ C3] <IRQ>
[ 38.971663][ C3] dump_stack_lvl+0xfc/0x174
[ 38.972620][ C3] print_report.cold+0x2c3/0x752
[ 38.973626][ C3] ? ar5523_cmd_tx_cb+0x220/0x240
[ 38.974644][ C3] kasan_report+0xb1/0x1d0
[ 38.975720][ C3] ? ar5523_cmd_tx_cb+0x220/0x240
[ 38.976831][ C3] ar5523_cmd_tx_cb+0x220/0x240
[ 38.978412][ C3] __usb_hcd_giveback_urb+0x353/0x5b0
[ 38.979755][ C3] usb_hcd_giveback_urb+0x385/0x430
[ 38.981266][ C3] dummy_timer+0x140c/0x34e0
[ 38.982925][ C3] ? notifier_call_chain+0xb5/0x1e0
[ 38.984761][ C3] ? rcu_read_lock_sched_held+0xb/0x60
[ 38.986242][ C3] ? lock_release+0x51c/0x790
[ 38.987323][ C3] ? _raw_read_unlock_irqrestore+0x37/0x70
[ 38.988483][ C3] ? __wake_up_common_lock+0xde/0x130
[ 38.989621][ C3] ? reacquire_held_locks+0x4a0/0x4a0
[ 38.990777][ C3] ? lock_acquire+0x472/0x550
[ 38.991919][ C3] ? rcu_read_lock_sched_held+0xb/0x60
[ 38.993138][ C3] ? lock_acquire+0x472/0x550
[ 38.994890][ C3] ? dummy_urb_enqueue+0x860/0x860
[ 38.996266][ C3] ? do_raw_spin_unlock+0x16f/0x230
[ 38.997670][ C3] ? dummy_urb_enqueue+0x860/0x860
[ 38.999116][ C3] call_timer_fn+0x1a0/0x6a0
[ 39.000668][ C3] ? add_timer_on+0x4a0/0x4a0
[ 39.002137][ C3] ? reacquire_held_locks+0x4a0/0x4a0
[ 39.003809][ C3] ? __next_timer_interrupt+0x226/0x2a0
[ 39.005509][ C3] __run_timers.part.0+0x69a/0xac0
[ 39.007025][ C3] ? dummy_urb_enqueue+0x860/0x860
[ 39.008716][ C3] ? call_timer_fn+0x6a0/0x6a0
[ 39.010254][ C3] ? cpuacct_percpu_seq_show+0x10/0x10
[ 39.011795][ C3] ? kvm_sched_clock_read+0x14/0x40
[ 39.013277][ C3] ? sched_clock_cpu+0x69/0x2b0
[ 39.014724][ C3] run_timer_softirq+0xb6/0x1d0
[ 39.016196][ C3] __do_softirq+0x1d2/0x9be
[ 39.017616][ C3] __irq_exit_rcu+0xeb/0x190
[ 39.019004][ C3] irq_exit_rcu+0x5/0x20
[ 39.020361][ C3] sysvec_apic_timer_interrupt+0x8f/0xb0
[ 39.021965][ C3] </IRQ>
[ 39.023237][ C3] <TASK>
In ar5523_probe(), ar5523_host_available() calls ar5523_cmd() as below
(there are other functions which finally call ar5523_cmd()):
ar5523_probe()
-> ar5523_host_available()
-> ar5523_cmd_read()
-> ar5523_cmd()
If ar5523_cmd() timed out, then ar5523_host_available() failed and
ar5523_probe() freed the device structure. So, ar5523_cmd_tx_cb()
might touch the freed structure.
This patch fixes this issue by canceling in-flight tx cmd if submitted
urb timed out. |