| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The EventPrime - Events Calendar, Bookings and Tickets plugin for WordPress is vulnerable to Sensitive Information Exposure in all versions up to, and including, 4.2.7.0 via the REST API. This makes it possible for unauthenticated attackers to extract sensitive booking data including user names, email addresses, ticket details, payment information, and order keys when the API is enabled by an administrator. The vulnerability was partially patched in version 4.2.7.0. |
| In the Linux kernel, the following vulnerability has been resolved:
ublk: fix deadlock when reading partition table
When one process(such as udev) opens ublk block device (e.g., to read
the partition table via bdev_open()), a deadlock[1] can occur:
1. bdev_open() grabs disk->open_mutex
2. The process issues read I/O to ublk backend to read partition table
3. In __ublk_complete_rq(), blk_update_request() or blk_mq_end_request()
runs bio->bi_end_io() callbacks
4. If this triggers fput() on file descriptor of ublk block device, the
work may be deferred to current task's task work (see fput() implementation)
5. This eventually calls blkdev_release() from the same context
6. blkdev_release() tries to grab disk->open_mutex again
7. Deadlock: same task waiting for a mutex it already holds
The fix is to run blk_update_request() and blk_mq_end_request() with bottom
halves disabled. This forces blkdev_release() to run in kernel work-queue
context instead of current task work context, and allows ublk server to make
forward progress, and avoids the deadlock.
[axboe: rewrite comment in ublk] |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: ets: Always remove class from active list before deleting in ets_qdisc_change
zdi-disclosures@trendmicro.com says:
The vulnerability is a race condition between `ets_qdisc_dequeue` and
`ets_qdisc_change`. It leads to UAF on `struct Qdisc` object.
Attacker requires the capability to create new user and network namespace
in order to trigger the bug.
See my additional commentary at the end of the analysis.
Analysis:
static int ets_qdisc_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
...
// (1) this lock is preventing .change handler (`ets_qdisc_change`)
//to race with .dequeue handler (`ets_qdisc_dequeue`)
sch_tree_lock(sch);
for (i = nbands; i < oldbands; i++) {
if (i >= q->nstrict && q->classes[i].qdisc->q.qlen)
list_del_init(&q->classes[i].alist);
qdisc_purge_queue(q->classes[i].qdisc);
}
WRITE_ONCE(q->nbands, nbands);
for (i = nstrict; i < q->nstrict; i++) {
if (q->classes[i].qdisc->q.qlen) {
// (2) the class is added to the q->active
list_add_tail(&q->classes[i].alist, &q->active);
q->classes[i].deficit = quanta[i];
}
}
WRITE_ONCE(q->nstrict, nstrict);
memcpy(q->prio2band, priomap, sizeof(priomap));
for (i = 0; i < q->nbands; i++)
WRITE_ONCE(q->classes[i].quantum, quanta[i]);
for (i = oldbands; i < q->nbands; i++) {
q->classes[i].qdisc = queues[i];
if (q->classes[i].qdisc != &noop_qdisc)
qdisc_hash_add(q->classes[i].qdisc, true);
}
// (3) the qdisc is unlocked, now dequeue can be called in parallel
// to the rest of .change handler
sch_tree_unlock(sch);
ets_offload_change(sch);
for (i = q->nbands; i < oldbands; i++) {
// (4) we're reducing the refcount for our class's qdisc and
// freeing it
qdisc_put(q->classes[i].qdisc);
// (5) If we call .dequeue between (4) and (5), we will have
// a strong UAF and we can control RIP
q->classes[i].qdisc = NULL;
WRITE_ONCE(q->classes[i].quantum, 0);
q->classes[i].deficit = 0;
gnet_stats_basic_sync_init(&q->classes[i].bstats);
memset(&q->classes[i].qstats, 0, sizeof(q->classes[i].qstats));
}
return 0;
}
Comment:
This happens because some of the classes have their qdiscs assigned to
NULL, but remain in the active list. This commit fixes this issue by always
removing the class from the active list before deleting and freeing its
associated qdisc
Reproducer Steps
(trimmed version of what was sent by zdi-disclosures@trendmicro.com)
```
DEV="${DEV:-lo}"
ROOT_HANDLE="${ROOT_HANDLE:-1:}"
BAND2_HANDLE="${BAND2_HANDLE:-20:}" # child under 1:2
PING_BYTES="${PING_BYTES:-48}"
PING_COUNT="${PING_COUNT:-200000}"
PING_DST="${PING_DST:-127.0.0.1}"
SLOW_TBF_RATE="${SLOW_TBF_RATE:-8bit}"
SLOW_TBF_BURST="${SLOW_TBF_BURST:-100b}"
SLOW_TBF_LAT="${SLOW_TBF_LAT:-1s}"
cleanup() {
tc qdisc del dev "$DEV" root 2>/dev/null
}
trap cleanup EXIT
ip link set "$DEV" up
tc qdisc del dev "$DEV" root 2>/dev/null || true
tc qdisc add dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 2
tc qdisc add dev "$DEV" parent 1:2 handle "$BAND2_HANDLE" \
tbf rate "$SLOW_TBF_RATE" burst "$SLOW_TBF_BURST" latency "$SLOW_TBF_LAT"
tc filter add dev "$DEV" parent 1: protocol all prio 1 u32 match u32 0 0 flowid 1:2
tc -s qdisc ls dev $DEV
ping -I "$DEV" -f -c "$PING_COUNT" -s "$PING_BYTES" -W 0.001 "$PING_DST" \
>/dev/null 2>&1 &
tc qdisc change dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 0
tc qdisc change dev "$DEV" root handle "$ROOT_HANDLE" ets bands 2 strict 2
tc -s qdisc ls dev $DEV
tc qdisc del dev "$DEV" parent
---truncated--- |
| An issue in Semantic machines v5.4.8 allows attackers to bypass authentication via sending a crafted HTTP request to various API endpoints. |
| In the Linux kernel, the following vulnerability has been resolved:
ntfs: set dummy blocksize to read boot_block when mounting
When mounting, sb->s_blocksize is used to read the boot_block without
being defined or validated. Set a dummy blocksize before attempting to
read the boot_block.
The issue can be triggered with the following syz reproducer:
mkdirat(0xffffffffffffff9c, &(0x7f0000000080)='./file1\x00', 0x0)
r4 = openat$nullb(0xffffffffffffff9c, &(0x7f0000000040), 0x121403, 0x0)
ioctl$FS_IOC_SETFLAGS(r4, 0x40081271, &(0x7f0000000980)=0x4000)
mount(&(0x7f0000000140)=@nullb, &(0x7f0000000040)='./cgroup\x00',
&(0x7f0000000000)='ntfs3\x00', 0x2208004, 0x0)
syz_clone(0x88200200, 0x0, 0x0, 0x0, 0x0, 0x0)
Here, the ioctl sets the bdev block size to 16384. During mount,
get_tree_bdev_flags() calls sb_set_blocksize(sb, block_size(bdev)),
but since block_size(bdev) > PAGE_SIZE, sb_set_blocksize() leaves
sb->s_blocksize at zero.
Later, ntfs_init_from_boot() attempts to read the boot_block while
sb->s_blocksize is still zero, which triggers the bug.
[almaz.alexandrovich@paragon-software.com: changed comment style, added
return value handling] |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix double unregister of HCA_PORTS component
Clear hca_devcom_comp in device's private data after unregistering it in
LAG teardown. Otherwise a slightly lagging second pass through
mlx5_unload_one() might try to unregister it again and trip over
use-after-free.
On s390 almost all PCI level recovery events trigger two passes through
mxl5_unload_one() - one through the poll_health() method and one through
mlx5_pci_err_detected() as callback from generic PCI error recovery.
While testing PCI error recovery paths with more kernel debug features
enabled, this issue reproducibly led to kernel panics with the following
call chain:
Unable to handle kernel pointer dereference in virtual kernel address space
Failing address: 6b6b6b6b6b6b6000 TEID: 6b6b6b6b6b6b6803 ESOP-2 FSI
Fault in home space mode while using kernel ASCE.
AS:00000000705c4007 R3:0000000000000024
Oops: 0038 ilc:3 [#1]SMP
CPU: 14 UID: 0 PID: 156 Comm: kmcheck Kdump: loaded Not tainted
6.18.0-20251130.rc7.git0.16131a59cab1.300.fc43.s390x+debug #1 PREEMPT
Krnl PSW : 0404e00180000000 0000020fc86aa1dc (__lock_acquire+0x5c/0x15f0)
R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3
Krnl GPRS: 0000000000000000 0000020f00000001 6b6b6b6b6b6b6c33 0000000000000000
0000000000000000 0000000000000000 0000000000000001 0000000000000000
0000000000000000 0000020fca28b820 0000000000000000 0000010a1ced8100
0000010a1ced8100 0000020fc9775068 0000018fce14f8b8 0000018fce14f7f8
Krnl Code: 0000020fc86aa1cc: e3b003400004 lg %r11,832
0000020fc86aa1d2: a7840211 brc 8,0000020fc86aa5f4
*0000020fc86aa1d6: c09000df0b25 larl %r9,0000020fca28b820
>0000020fc86aa1dc: d50790002000 clc 0(8,%r9),0(%r2)
0000020fc86aa1e2: a7840209 brc 8,0000020fc86aa5f4
0000020fc86aa1e6: c0e001100401 larl %r14,0000020fca8aa9e8
0000020fc86aa1ec: c01000e25a00 larl %r1,0000020fca2f55ec
0000020fc86aa1f2: a7eb00e8 aghi %r14,232
Call Trace:
__lock_acquire+0x5c/0x15f0
lock_acquire.part.0+0xf8/0x270
lock_acquire+0xb0/0x1b0
down_write+0x5a/0x250
mlx5_detach_device+0x42/0x110 [mlx5_core]
mlx5_unload_one_devl_locked+0x50/0xc0 [mlx5_core]
mlx5_unload_one+0x42/0x60 [mlx5_core]
mlx5_pci_err_detected+0x94/0x150 [mlx5_core]
zpci_event_attempt_error_recovery+0xcc/0x388 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Limit num_syncs to prevent oversized allocations
The exec and vm_bind ioctl allow userspace to specify an arbitrary
num_syncs value. Without bounds checking, a very large num_syncs
can force an excessively large allocation, leading to kernel warnings
from the page allocator as below.
Introduce DRM_XE_MAX_SYNCS (set to 1024) and reject any request
exceeding this limit.
"
------------[ cut here ]------------
WARNING: CPU: 0 PID: 1217 at mm/page_alloc.c:5124 __alloc_frozen_pages_noprof+0x2f8/0x2180 mm/page_alloc.c:5124
...
Call Trace:
<TASK>
alloc_pages_mpol+0xe4/0x330 mm/mempolicy.c:2416
___kmalloc_large_node+0xd8/0x110 mm/slub.c:4317
__kmalloc_large_node_noprof+0x18/0xe0 mm/slub.c:4348
__do_kmalloc_node mm/slub.c:4364 [inline]
__kmalloc_noprof+0x3d4/0x4b0 mm/slub.c:4388
kmalloc_noprof include/linux/slab.h:909 [inline]
kmalloc_array_noprof include/linux/slab.h:948 [inline]
xe_exec_ioctl+0xa47/0x1e70 drivers/gpu/drm/xe/xe_exec.c:158
drm_ioctl_kernel+0x1f1/0x3e0 drivers/gpu/drm/drm_ioctl.c:797
drm_ioctl+0x5e7/0xc50 drivers/gpu/drm/drm_ioctl.c:894
xe_drm_ioctl+0x10b/0x170 drivers/gpu/drm/xe/xe_device.c:224
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:598 [inline]
__se_sys_ioctl fs/ioctl.c:584 [inline]
__x64_sys_ioctl+0x18b/0x210 fs/ioctl.c:584
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xbb/0x380 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
...
"
v2: Add "Reported-by" and Cc stable kernels.
v3: Change XE_MAX_SYNCS from 64 to 1024. (Matt & Ashutosh)
v4: s/XE_MAX_SYNCS/DRM_XE_MAX_SYNCS/ (Matt)
v5: Do the check at the top of the exec func. (Matt)
(cherry picked from commit b07bac9bd708ec468cd1b8a5fe70ae2ac9b0a11c) |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: Disallow toggling KVM_MEM_GUEST_MEMFD on an existing memslot
Reject attempts to disable KVM_MEM_GUEST_MEMFD on a memslot that was
initially created with a guest_memfd binding, as KVM doesn't support
toggling KVM_MEM_GUEST_MEMFD on existing memslots. KVM prevents enabling
KVM_MEM_GUEST_MEMFD, but doesn't prevent clearing the flag.
Failure to reject the new memslot results in a use-after-free due to KVM
not unbinding from the guest_memfd instance. Unbinding on a FLAGS_ONLY
change is easy enough, and can/will be done as a hardening measure (in
anticipation of KVM supporting dirty logging on guest_memfd at some point),
but fixing the use-after-free would only address the immediate symptom.
==================================================================
BUG: KASAN: slab-use-after-free in kvm_gmem_release+0x362/0x400 [kvm]
Write of size 8 at addr ffff8881111ae908 by task repro/745
CPU: 7 UID: 1000 PID: 745 Comm: repro Not tainted 6.18.0-rc6-115d5de2eef3-next-kasan #3 NONE
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
Call Trace:
<TASK>
dump_stack_lvl+0x51/0x60
print_report+0xcb/0x5c0
kasan_report+0xb4/0xe0
kvm_gmem_release+0x362/0x400 [kvm]
__fput+0x2fa/0x9d0
task_work_run+0x12c/0x200
do_exit+0x6ae/0x2100
do_group_exit+0xa8/0x230
__x64_sys_exit_group+0x3a/0x50
x64_sys_call+0x737/0x740
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f581f2eac31
</TASK>
Allocated by task 745 on cpu 6 at 9.746971s:
kasan_save_stack+0x20/0x40
kasan_save_track+0x13/0x50
__kasan_kmalloc+0x77/0x90
kvm_set_memory_region.part.0+0x652/0x1110 [kvm]
kvm_vm_ioctl+0x14b0/0x3290 [kvm]
__x64_sys_ioctl+0x129/0x1a0
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53
Freed by task 745 on cpu 6 at 9.747467s:
kasan_save_stack+0x20/0x40
kasan_save_track+0x13/0x50
__kasan_save_free_info+0x37/0x50
__kasan_slab_free+0x3b/0x60
kfree+0xf5/0x440
kvm_set_memslot+0x3c2/0x1160 [kvm]
kvm_set_memory_region.part.0+0x86a/0x1110 [kvm]
kvm_vm_ioctl+0x14b0/0x3290 [kvm]
__x64_sys_ioctl+0x129/0x1a0
do_syscall_64+0x5b/0x900
entry_SYSCALL_64_after_hwframe+0x4b/0x53 |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: fw_tracer, Validate format string parameters
Add validation for format string parameters in the firmware tracer to
prevent potential security vulnerabilities and crashes from malformed
format strings received from firmware.
The firmware tracer receives format strings from the device firmware and
uses them to format trace messages. Without proper validation, bad
firmware could provide format strings with invalid format specifiers
(e.g., %s, %p, %n) that could lead to crashes, or other undefined
behavior.
Add mlx5_tracer_validate_params() to validate that all format specifiers
in trace strings are limited to safe integer/hex formats (%x, %d, %i,
%u, %llx, %lx, etc.). Reject strings containing other format types that
could be used to access arbitrary memory or cause crashes.
Invalid format strings are added to the trace output for visibility with
"BAD_FORMAT: " prefix. |
| In the Linux kernel, the following vulnerability has been resolved:
fuse: fix readahead reclaim deadlock
Commit e26ee4efbc79 ("fuse: allocate ff->release_args only if release is
needed") skips allocating ff->release_args if the server does not
implement open. However in doing so, fuse_prepare_release() now skips
grabbing the reference on the inode, which makes it possible for an
inode to be evicted from the dcache while there are inflight readahead
requests. This causes a deadlock if the server triggers reclaim while
servicing the readahead request and reclaim attempts to evict the inode
of the file being read ahead. Since the folio is locked during
readahead, when reclaim evicts the fuse inode and fuse_evict_inode()
attempts to remove all folios associated with the inode from the page
cache (truncate_inode_pages_range()), reclaim will block forever waiting
for the lock since readahead cannot relinquish the lock because it is
itself blocked in reclaim:
>>> stack_trace(1504735)
folio_wait_bit_common (mm/filemap.c:1308:4)
folio_lock (./include/linux/pagemap.h:1052:3)
truncate_inode_pages_range (mm/truncate.c:336:10)
fuse_evict_inode (fs/fuse/inode.c:161:2)
evict (fs/inode.c:704:3)
dentry_unlink_inode (fs/dcache.c:412:3)
__dentry_kill (fs/dcache.c:615:3)
shrink_kill (fs/dcache.c:1060:12)
shrink_dentry_list (fs/dcache.c:1087:3)
prune_dcache_sb (fs/dcache.c:1168:2)
super_cache_scan (fs/super.c:221:10)
do_shrink_slab (mm/shrinker.c:435:9)
shrink_slab (mm/shrinker.c:626:10)
shrink_node (mm/vmscan.c:5951:2)
shrink_zones (mm/vmscan.c:6195:3)
do_try_to_free_pages (mm/vmscan.c:6257:3)
do_swap_page (mm/memory.c:4136:11)
handle_pte_fault (mm/memory.c:5562:10)
handle_mm_fault (mm/memory.c:5870:9)
do_user_addr_fault (arch/x86/mm/fault.c:1338:10)
handle_page_fault (arch/x86/mm/fault.c:1481:3)
exc_page_fault (arch/x86/mm/fault.c:1539:2)
asm_exc_page_fault+0x22/0x27
Fix this deadlock by allocating ff->release_args and grabbing the
reference on the inode when preparing the file for release even if the
server does not implement open. The inode reference will be dropped when
the last reference on the fuse file is dropped (see fuse_file_put() ->
fuse_release_end()). |
| Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow in the cloneType2 parameter of the fromAdvSetMacMtuWan function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow in the wanSpeed2 parameter of the fromAdvSetMacMtuWan function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| Tenda AX-3 v16.03.12.10_CN was discovered to contain a stack overflow in the wanMTU2 parameter of the fromAdvSetMacMtuWan function. This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted request. |
| In the Linux kernel, the following vulnerability has been resolved:
svcrdma: bound check rq_pages index in inline path
svc_rdma_copy_inline_range indexed rqstp->rq_pages[rc_curpage] without
verifying rc_curpage stays within the allocated page array. Add guards
before the first use and after advancing to a new page. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: lkkbd - disable pending work before freeing device
lkkbd_interrupt() schedules lk->tq via schedule_work(), and the work
handler lkkbd_reinit() dereferences the lkkbd structure and its
serio/input_dev fields.
lkkbd_disconnect() and error paths in lkkbd_connect() free the lkkbd
structure without preventing the reinit work from being queued again
until serio_close() returns. This can allow the work handler to run
after the structure has been freed, leading to a potential use-after-free.
Use disable_work_sync() instead of cancel_work_sync() to ensure the
reinit work cannot be re-queued, and call it both in lkkbd_disconnect()
and in lkkbd_connect() error paths after serio_open(). |
| In the Linux kernel, the following vulnerability has been resolved:
functionfs: fix the open/removal races
ffs_epfile_open() can race with removal, ending up with file->private_data
pointing to freed object.
There is a total count of opened files on functionfs (both ep0 and
dynamic ones) and when it hits zero, dynamic files get removed.
Unfortunately, that removal can happen while another thread is
in ffs_epfile_open(), but has not incremented the count yet.
In that case open will succeed, leaving us with UAF on any subsequent
read() or write().
The root cause is that ffs->opened is misused; atomic_dec_and_test() vs.
atomic_add_return() is not a good idea, when object remains visible all
along.
To untangle that
* serialize openers on ffs->mutex (both for ep0 and for dynamic files)
* have dynamic ones use atomic_inc_not_zero() and fail if we had
zero ->opened; in that case the file we are opening is doomed.
* have the inodes of dynamic files marked on removal (from the
callback of simple_recursive_removal()) - clear ->i_private there.
* have open of dynamic ones verify they hadn't been already removed,
along with checking that state is FFS_ACTIVE. |
| In the Linux kernel, the following vulnerability has been resolved:
net: nfc: fix deadlock between nfc_unregister_device and rfkill_fop_write
A deadlock can occur between nfc_unregister_device() and rfkill_fop_write()
due to lock ordering inversion between device_lock and rfkill_global_mutex.
The problematic lock order is:
Thread A (rfkill_fop_write):
rfkill_fop_write()
mutex_lock(&rfkill_global_mutex)
rfkill_set_block()
nfc_rfkill_set_block()
nfc_dev_down()
device_lock(&dev->dev) <- waits for device_lock
Thread B (nfc_unregister_device):
nfc_unregister_device()
device_lock(&dev->dev)
rfkill_unregister()
mutex_lock(&rfkill_global_mutex) <- waits for rfkill_global_mutex
This creates a classic ABBA deadlock scenario.
Fix this by moving rfkill_unregister() and rfkill_destroy() outside the
device_lock critical section. Store the rfkill pointer in a local variable
before releasing the lock, then call rfkill_unregister() after releasing
device_lock.
This change is safe because rfkill_fop_write() holds rfkill_global_mutex
while calling the rfkill callbacks, and rfkill_unregister() also acquires
rfkill_global_mutex before cleanup. Therefore, rfkill_unregister() will
wait for any ongoing callback to complete before proceeding, and
device_del() is only called after rfkill_unregister() returns, preventing
any use-after-free.
The similar lock ordering in nfc_register_device() (device_lock ->
rfkill_global_mutex via rfkill_register) is safe because during
registration the device is not yet in rfkill_list, so no concurrent
rfkill operations can occur on this device. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btusb: revert use of devm_kzalloc in btusb
This reverts commit 98921dbd00c4e ("Bluetooth: Use devm_kzalloc in
btusb.c file").
In btusb_probe(), we use devm_kzalloc() to allocate the btusb data. This
ties the lifetime of all the btusb data to the binding of a driver to
one interface, INTF. In a driver that binds to other interfaces, ISOC
and DIAG, this is an accident waiting to happen.
The issue is revealed in btusb_disconnect(), where calling
usb_driver_release_interface(&btusb_driver, data->intf) will have devm
free the data that is also being used by the other interfaces of the
driver that may not be released yet.
To fix this, revert the use of devm and go back to freeing memory
explicitly. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: BUG() in pskb_expand_head() as part of calipso_skbuff_setattr()
There exists a kernel oops caused by a BUG_ON(nhead < 0) at
net/core/skbuff.c:2232 in pskb_expand_head().
This bug is triggered as part of the calipso_skbuff_setattr()
routine when skb_cow() is passed headroom > INT_MAX
(i.e. (int)(skb_headroom(skb) + len_delta) < 0).
The root cause of the bug is due to an implicit integer cast in
__skb_cow(). The check (headroom > skb_headroom(skb)) is meant to ensure
that delta = headroom - skb_headroom(skb) is never negative, otherwise
we will trigger a BUG_ON in pskb_expand_head(). However, if
headroom > INT_MAX and delta <= -NET_SKB_PAD, the check passes, delta
becomes negative, and pskb_expand_head() is passed a negative value for
nhead.
Fix the trigger condition in calipso_skbuff_setattr(). Avoid passing
"negative" headroom sizes to skb_cow() within calipso_skbuff_setattr()
by only using skb_cow() to grow headroom.
PoC:
Using `netlabelctl` tool:
netlabelctl map del default
netlabelctl calipso add pass doi:7
netlabelctl map add default address:0::1/128 protocol:calipso,7
Then run the following PoC:
int fd = socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDP);
// setup msghdr
int cmsg_size = 2;
int cmsg_len = 0x60;
struct msghdr msg;
struct sockaddr_in6 dest_addr;
struct cmsghdr * cmsg = (struct cmsghdr *) calloc(1,
sizeof(struct cmsghdr) + cmsg_len);
msg.msg_name = &dest_addr;
msg.msg_namelen = sizeof(dest_addr);
msg.msg_iov = NULL;
msg.msg_iovlen = 0;
msg.msg_control = cmsg;
msg.msg_controllen = cmsg_len;
msg.msg_flags = 0;
// setup sockaddr
dest_addr.sin6_family = AF_INET6;
dest_addr.sin6_port = htons(31337);
dest_addr.sin6_flowinfo = htonl(31337);
dest_addr.sin6_addr = in6addr_loopback;
dest_addr.sin6_scope_id = 31337;
// setup cmsghdr
cmsg->cmsg_len = cmsg_len;
cmsg->cmsg_level = IPPROTO_IPV6;
cmsg->cmsg_type = IPV6_HOPOPTS;
char * hop_hdr = (char *)cmsg + sizeof(struct cmsghdr);
hop_hdr[1] = 0x9; //set hop size - (0x9 + 1) * 8 = 80
sendmsg(fd, &msg, 0); |
| In the Linux kernel, the following vulnerability has been resolved:
net: rose: fix invalid array index in rose_kill_by_device()
rose_kill_by_device() collects sockets into a local array[] and then
iterates over them to disconnect sockets bound to a device being brought
down.
The loop mistakenly indexes array[cnt] instead of array[i]. For cnt <
ARRAY_SIZE(array), this reads an uninitialized entry; for cnt ==
ARRAY_SIZE(array), it is an out-of-bounds read. Either case can lead to
an invalid socket pointer dereference and also leaks references taken
via sock_hold().
Fix the index to use i. |