| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
media: camss: Clean up received buffers on failed start of streaming
It is required to return the received buffers, if streaming can not be
started. For instance media_pipeline_start() may fail with EPIPE, if
a link validation between entities is not passed, and in such a case
a user gets a kernel warning:
WARNING: CPU: 1 PID: 520 at drivers/media/common/videobuf2/videobuf2-core.c:1592 vb2_start_streaming+0xec/0x160
<snip>
Call trace:
vb2_start_streaming+0xec/0x160
vb2_core_streamon+0x9c/0x1a0
vb2_ioctl_streamon+0x68/0xbc
v4l_streamon+0x30/0x3c
__video_do_ioctl+0x184/0x3e0
video_usercopy+0x37c/0x7b0
video_ioctl2+0x24/0x40
v4l2_ioctl+0x4c/0x70
The fix is to correct the error path in video_start_streaming() of camss. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix PCI device refcount leak in amdgpu_atrm_get_bios()
As comment of pci_get_class() says, it returns a pci_device with its
refcount increased and decreased the refcount for the input parameter
@from if it is not NULL.
If we break the loop in amdgpu_atrm_get_bios() with 'pdev' not NULL, we
need to call pci_dev_put() to decrease the refcount. Add the missing
pci_dev_put() to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/xen: Fix memory leak in xen_init_lock_cpu()
In xen_init_lock_cpu(), the @name has allocated new string by kasprintf(),
if bind_ipi_to_irqhandler() fails, it should be freed, otherwise may lead
to a memory leak issue, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Avoid UBSAN error on true_sectors_per_clst()
syzbot reported UBSAN error as below:
[ 76.901829][ T6677] ================================================================================
[ 76.903908][ T6677] UBSAN: shift-out-of-bounds in fs/ntfs3/super.c:675:13
[ 76.905363][ T6677] shift exponent -247 is negative
This patch avoid this error. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: marvell/octeontx - prevent integer overflows
The "code_length" value comes from the firmware file. If your firmware
is untrusted realistically there is probably very little you can do to
protect yourself. Still we try to limit the damage as much as possible.
Also Smatch marks any data read from the filesystem as untrusted and
prints warnings if it not capped correctly.
The "code_length * 2" can overflow. The round_up(ucode_size, 16) +
sizeof() expression can overflow too. Prevent these overflows. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6/sit: use DEV_STATS_INC() to avoid data-races
syzbot/KCSAN reported that multiple cpus are updating dev->stats.tx_error
concurrently.
This is because sit tunnels are NETIF_F_LLTX, meaning their ndo_start_xmit()
is not protected by a spinlock.
While original KCSAN report was about tx path, rx path has the same issue. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ar5523: Fix use-after-free on ar5523_cmd() timed out
syzkaller reported use-after-free with the stack trace like below [1]:
[ 38.960489][ C3] ==================================================================
[ 38.963216][ C3] BUG: KASAN: use-after-free in ar5523_cmd_tx_cb+0x220/0x240
[ 38.964950][ C3] Read of size 8 at addr ffff888048e03450 by task swapper/3/0
[ 38.966363][ C3]
[ 38.967053][ C3] CPU: 3 PID: 0 Comm: swapper/3 Not tainted 6.0.0-09039-ga6afa4199d3d-dirty #18
[ 38.968464][ C3] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014
[ 38.969959][ C3] Call Trace:
[ 38.970841][ C3] <IRQ>
[ 38.971663][ C3] dump_stack_lvl+0xfc/0x174
[ 38.972620][ C3] print_report.cold+0x2c3/0x752
[ 38.973626][ C3] ? ar5523_cmd_tx_cb+0x220/0x240
[ 38.974644][ C3] kasan_report+0xb1/0x1d0
[ 38.975720][ C3] ? ar5523_cmd_tx_cb+0x220/0x240
[ 38.976831][ C3] ar5523_cmd_tx_cb+0x220/0x240
[ 38.978412][ C3] __usb_hcd_giveback_urb+0x353/0x5b0
[ 38.979755][ C3] usb_hcd_giveback_urb+0x385/0x430
[ 38.981266][ C3] dummy_timer+0x140c/0x34e0
[ 38.982925][ C3] ? notifier_call_chain+0xb5/0x1e0
[ 38.984761][ C3] ? rcu_read_lock_sched_held+0xb/0x60
[ 38.986242][ C3] ? lock_release+0x51c/0x790
[ 38.987323][ C3] ? _raw_read_unlock_irqrestore+0x37/0x70
[ 38.988483][ C3] ? __wake_up_common_lock+0xde/0x130
[ 38.989621][ C3] ? reacquire_held_locks+0x4a0/0x4a0
[ 38.990777][ C3] ? lock_acquire+0x472/0x550
[ 38.991919][ C3] ? rcu_read_lock_sched_held+0xb/0x60
[ 38.993138][ C3] ? lock_acquire+0x472/0x550
[ 38.994890][ C3] ? dummy_urb_enqueue+0x860/0x860
[ 38.996266][ C3] ? do_raw_spin_unlock+0x16f/0x230
[ 38.997670][ C3] ? dummy_urb_enqueue+0x860/0x860
[ 38.999116][ C3] call_timer_fn+0x1a0/0x6a0
[ 39.000668][ C3] ? add_timer_on+0x4a0/0x4a0
[ 39.002137][ C3] ? reacquire_held_locks+0x4a0/0x4a0
[ 39.003809][ C3] ? __next_timer_interrupt+0x226/0x2a0
[ 39.005509][ C3] __run_timers.part.0+0x69a/0xac0
[ 39.007025][ C3] ? dummy_urb_enqueue+0x860/0x860
[ 39.008716][ C3] ? call_timer_fn+0x6a0/0x6a0
[ 39.010254][ C3] ? cpuacct_percpu_seq_show+0x10/0x10
[ 39.011795][ C3] ? kvm_sched_clock_read+0x14/0x40
[ 39.013277][ C3] ? sched_clock_cpu+0x69/0x2b0
[ 39.014724][ C3] run_timer_softirq+0xb6/0x1d0
[ 39.016196][ C3] __do_softirq+0x1d2/0x9be
[ 39.017616][ C3] __irq_exit_rcu+0xeb/0x190
[ 39.019004][ C3] irq_exit_rcu+0x5/0x20
[ 39.020361][ C3] sysvec_apic_timer_interrupt+0x8f/0xb0
[ 39.021965][ C3] </IRQ>
[ 39.023237][ C3] <TASK>
In ar5523_probe(), ar5523_host_available() calls ar5523_cmd() as below
(there are other functions which finally call ar5523_cmd()):
ar5523_probe()
-> ar5523_host_available()
-> ar5523_cmd_read()
-> ar5523_cmd()
If ar5523_cmd() timed out, then ar5523_host_available() failed and
ar5523_probe() freed the device structure. So, ar5523_cmd_tx_cb()
might touch the freed structure.
This patch fixes this issue by canceling in-flight tx cmd if submitted
urb timed out. |
| In the Linux kernel, the following vulnerability has been resolved:
net: do not allow gso_size to be set to GSO_BY_FRAGS
One missing check in virtio_net_hdr_to_skb() allowed
syzbot to crash kernels again [1]
Do not allow gso_size to be set to GSO_BY_FRAGS (0xffff),
because this magic value is used by the kernel.
[1]
general protection fault, probably for non-canonical address 0xdffffc000000000e: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000070-0x0000000000000077]
CPU: 0 PID: 5039 Comm: syz-executor401 Not tainted 6.5.0-rc5-next-20230809-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/26/2023
RIP: 0010:skb_segment+0x1a52/0x3ef0 net/core/skbuff.c:4500
Code: 00 00 00 e9 ab eb ff ff e8 6b 96 5d f9 48 8b 84 24 00 01 00 00 48 8d 78 70 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <0f> b6 04 02 84 c0 74 08 3c 03 0f 8e ea 21 00 00 48 8b 84 24 00 01
RSP: 0018:ffffc90003d3f1c8 EFLAGS: 00010202
RAX: dffffc0000000000 RBX: 000000000001fffe RCX: 0000000000000000
RDX: 000000000000000e RSI: ffffffff882a3115 RDI: 0000000000000070
RBP: ffffc90003d3f378 R08: 0000000000000005 R09: 000000000000ffff
R10: 000000000000ffff R11: 5ee4a93e456187d6 R12: 000000000001ffc6
R13: dffffc0000000000 R14: 0000000000000008 R15: 000000000000ffff
FS: 00005555563f2380(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020020000 CR3: 000000001626d000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
udp6_ufo_fragment+0x9d2/0xd50 net/ipv6/udp_offload.c:109
ipv6_gso_segment+0x5c4/0x17b0 net/ipv6/ip6_offload.c:120
skb_mac_gso_segment+0x292/0x610 net/core/gso.c:53
__skb_gso_segment+0x339/0x710 net/core/gso.c:124
skb_gso_segment include/net/gso.h:83 [inline]
validate_xmit_skb+0x3a5/0xf10 net/core/dev.c:3625
__dev_queue_xmit+0x8f0/0x3d60 net/core/dev.c:4329
dev_queue_xmit include/linux/netdevice.h:3082 [inline]
packet_xmit+0x257/0x380 net/packet/af_packet.c:276
packet_snd net/packet/af_packet.c:3087 [inline]
packet_sendmsg+0x24c7/0x5570 net/packet/af_packet.c:3119
sock_sendmsg_nosec net/socket.c:727 [inline]
sock_sendmsg+0xd9/0x180 net/socket.c:750
____sys_sendmsg+0x6ac/0x940 net/socket.c:2496
___sys_sendmsg+0x135/0x1d0 net/socket.c:2550
__sys_sendmsg+0x117/0x1e0 net/socket.c:2579
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7ff27cdb34d9 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race when deleting free space root from the dirty cow roots list
When deleting the free space tree we are deleting the free space root
from the list fs_info->dirty_cowonly_roots without taking the lock that
protects it, which is struct btrfs_fs_info::trans_lock.
This unsynchronized list manipulation may cause chaos if there's another
concurrent manipulation of this list, such as when adding a root to it
with ctree.c:add_root_to_dirty_list().
This can result in all sorts of weird failures caused by a race, such as
the following crash:
[337571.278245] general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] PREEMPT SMP PTI
[337571.278933] CPU: 1 PID: 115447 Comm: btrfs Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1
[337571.279153] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[337571.279572] RIP: 0010:commit_cowonly_roots+0x11f/0x250 [btrfs]
[337571.279928] Code: 85 38 06 00 (...)
[337571.280363] RSP: 0018:ffff9f63446efba0 EFLAGS: 00010206
[337571.280582] RAX: ffff942d98ec2638 RBX: ffff9430b82b4c30 RCX: 0000000449e1c000
[337571.280798] RDX: dead000000000100 RSI: ffff9430021e4900 RDI: 0000000000036070
[337571.281015] RBP: ffff942d98ec2000 R08: ffff942d98ec2000 R09: 000000000000015b
[337571.281254] R10: 0000000000000009 R11: 0000000000000001 R12: ffff942fe8fbf600
[337571.281476] R13: ffff942dabe23040 R14: ffff942dabe20800 R15: ffff942d92cf3b48
[337571.281723] FS: 00007f478adb7340(0000) GS:ffff94349fa40000(0000) knlGS:0000000000000000
[337571.281950] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[337571.282184] CR2: 00007f478ab9a3d5 CR3: 000000001e02c001 CR4: 0000000000370ee0
[337571.282416] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[337571.282647] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[337571.282874] Call Trace:
[337571.283101] <TASK>
[337571.283327] ? __die_body+0x1b/0x60
[337571.283570] ? die_addr+0x39/0x60
[337571.283796] ? exc_general_protection+0x22e/0x430
[337571.284022] ? asm_exc_general_protection+0x22/0x30
[337571.284251] ? commit_cowonly_roots+0x11f/0x250 [btrfs]
[337571.284531] btrfs_commit_transaction+0x42e/0xf90 [btrfs]
[337571.284803] ? _raw_spin_unlock+0x15/0x30
[337571.285031] ? release_extent_buffer+0x103/0x130 [btrfs]
[337571.285305] reset_balance_state+0x152/0x1b0 [btrfs]
[337571.285578] btrfs_balance+0xa50/0x11e0 [btrfs]
[337571.285864] ? __kmem_cache_alloc_node+0x14a/0x410
[337571.286086] btrfs_ioctl+0x249a/0x3320 [btrfs]
[337571.286358] ? mod_objcg_state+0xd2/0x360
[337571.286577] ? refill_obj_stock+0xb0/0x160
[337571.286798] ? seq_release+0x25/0x30
[337571.287016] ? __rseq_handle_notify_resume+0x3ba/0x4b0
[337571.287235] ? percpu_counter_add_batch+0x2e/0xa0
[337571.287455] ? __x64_sys_ioctl+0x88/0xc0
[337571.287675] __x64_sys_ioctl+0x88/0xc0
[337571.287901] do_syscall_64+0x38/0x90
[337571.288126] entry_SYSCALL_64_after_hwframe+0x72/0xdc
[337571.288352] RIP: 0033:0x7f478aaffe9b
So fix this by locking struct btrfs_fs_info::trans_lock before deleting
the free space root from that list. |
| In the Linux kernel, the following vulnerability has been resolved:
rpmsg: glink: Add check for kstrdup
Add check for the return value of kstrdup() and return the error
if it fails in order to avoid NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Add null pointer check for inode operations
This adds a sanity check for the i_op pointer of the inode which is
returned after reading Root directory MFT record. We should check the
i_op is valid before trying to create the root dentry, otherwise we may
encounter a NPD while mounting a image with a funny Root directory MFT
record.
[ 114.484325] BUG: kernel NULL pointer dereference, address: 0000000000000008
[ 114.484811] #PF: supervisor read access in kernel mode
[ 114.485084] #PF: error_code(0x0000) - not-present page
[ 114.485606] PGD 0 P4D 0
[ 114.485975] Oops: 0000 [#1] PREEMPT SMP KASAN NOPTI
[ 114.486570] CPU: 0 PID: 237 Comm: mount Tainted: G B 6.0.0-rc4 #28
[ 114.486977] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 114.488169] RIP: 0010:d_flags_for_inode+0xe0/0x110
[ 114.488816] Code: 24 f7 ff 49 83 3e 00 74 41 41 83 cd 02 66 44 89 6b 02 eb 92 48 8d 7b 20 e8 6d 24 f7 ff 4c 8b 73 20 49 8d 7e 08 e8 60 241
[ 114.490326] RSP: 0018:ffff8880065e7aa8 EFLAGS: 00000296
[ 114.490695] RAX: 0000000000000001 RBX: ffff888008ccd750 RCX: ffffffff84af2aea
[ 114.490986] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffffffff87abd020
[ 114.491364] RBP: ffff8880065e7ac8 R08: 0000000000000001 R09: fffffbfff0f57a05
[ 114.491675] R10: ffffffff87abd027 R11: fffffbfff0f57a04 R12: 0000000000000000
[ 114.491954] R13: 0000000000000008 R14: 0000000000000000 R15: ffff888008ccd750
[ 114.492397] FS: 00007fdc8a627e40(0000) GS:ffff888058200000(0000) knlGS:0000000000000000
[ 114.492797] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 114.493150] CR2: 0000000000000008 CR3: 00000000013ba000 CR4: 00000000000006f0
[ 114.493671] Call Trace:
[ 114.493890] <TASK>
[ 114.494075] __d_instantiate+0x24/0x1c0
[ 114.494505] d_instantiate.part.0+0x35/0x50
[ 114.494754] d_make_root+0x53/0x80
[ 114.494998] ntfs_fill_super+0x1232/0x1b50
[ 114.495260] ? put_ntfs+0x1d0/0x1d0
[ 114.495499] ? vsprintf+0x20/0x20
[ 114.495723] ? set_blocksize+0x95/0x150
[ 114.495964] get_tree_bdev+0x232/0x370
[ 114.496272] ? put_ntfs+0x1d0/0x1d0
[ 114.496502] ntfs_fs_get_tree+0x15/0x20
[ 114.496859] vfs_get_tree+0x4c/0x130
[ 114.497099] path_mount+0x654/0xfe0
[ 114.497507] ? putname+0x80/0xa0
[ 114.497933] ? finish_automount+0x2e0/0x2e0
[ 114.498362] ? putname+0x80/0xa0
[ 114.498571] ? kmem_cache_free+0x1c4/0x440
[ 114.498819] ? putname+0x80/0xa0
[ 114.499069] do_mount+0xd6/0xf0
[ 114.499343] ? path_mount+0xfe0/0xfe0
[ 114.499683] ? __kasan_check_write+0x14/0x20
[ 114.500133] __x64_sys_mount+0xca/0x110
[ 114.500592] do_syscall_64+0x3b/0x90
[ 114.500930] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 114.501294] RIP: 0033:0x7fdc898e948a
[ 114.501542] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008
[ 114.502716] RSP: 002b:00007ffd793e58f8 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5
[ 114.503175] RAX: ffffffffffffffda RBX: 0000564b2228f060 RCX: 00007fdc898e948a
[ 114.503588] RDX: 0000564b2228f260 RSI: 0000564b2228f2e0 RDI: 0000564b22297ce0
[ 114.504925] RBP: 0000000000000000 R08: 0000564b2228f280 R09: 0000000000000020
[ 114.505484] R10: 00000000c0ed0000 R11: 0000000000000202 R12: 0000564b22297ce0
[ 114.505823] R13: 0000564b2228f260 R14: 0000000000000000 R15: 00000000ffffffff
[ 114.506562] </TASK>
[ 114.506887] Modules linked in:
[ 114.507648] CR2: 0000000000000008
[ 114.508884] ---[ end trace 0000000000000000 ]---
[ 114.509675] RIP: 0010:d_flags_for_inode+0xe0/0x110
[ 114.510140] Code: 24 f7 ff 49 83 3e 00 74 41 41 83 cd 02 66 44 89 6b 02 eb 92 48 8d 7b 20 e8 6d 24 f7 ff 4c 8b 73 20 49 8d 7e 08 e8 60 241
[ 114.511762] RSP: 0018:ffff8880065e7aa8 EFLAGS: 00000296
[ 114.512401] RAX: 0000000000000001 RBX: ffff888008ccd750 RCX: ffffffff84af2aea
[ 114.51
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
misc: ocxl: fix possible refcount leak in afu_ioctl()
eventfd_ctx_put need to be called to put the refcount that gotten by
eventfd_ctx_fdget when ocxl_irq_set_handler fails. |
| In the Linux kernel, the following vulnerability has been resolved:
soundwire: fix enumeration completion
The soundwire subsystem uses two completion structures that allow
drivers to wait for soundwire device to become enumerated on the bus and
initialised by their drivers, respectively.
The code implementing the signalling is currently broken as it does not
signal all current and future waiters and also uses the wrong
reinitialisation function, which can potentially lead to memory
corruption if there are still waiters on the queue.
Not signalling future waiters specifically breaks sound card probe
deferrals as codec drivers can not tell that the soundwire device is
already attached when being reprobed. Some codec runtime PM
implementations suffer from similar problems as waiting for enumeration
during resume can also timeout despite the device already having been
enumerated. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: stm32-pwr: fix of_iomap leak
Smatch reports:
drivers/regulator/stm32-pwr.c:166 stm32_pwr_regulator_probe() warn:
'base' from of_iomap() not released on lines: 151,166.
In stm32_pwr_regulator_probe(), base is not released
when devm_kzalloc() fails to allocate memory or
devm_regulator_register() fails to register a new regulator device,
which may cause a leak.
To fix this issue, replace of_iomap() with
devm_platform_ioremap_resource(). devm_platform_ioremap_resource()
is a specialized function for platform devices.
It allows 'base' to be automatically released whether the probe
function succeeds or fails.
Besides, use IS_ERR(base) instead of !base
as the return value of devm_platform_ioremap_resource()
can either be a pointer to the remapped memory or
an ERR_PTR() encoded error code if the operation fails. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gvt: fix gvt debugfs destroy
When gvt debug fs is destroyed, need to have a sane check if drm
minor's debugfs root is still available or not, otherwise in case like
device remove through unbinding, drm minor's debugfs directory has
already been removed, then intel_gvt_debugfs_clean() would act upon
dangling pointer like below oops.
i915 0000:00:02.0: Direct firmware load for i915/gvt/vid_0x8086_did_0x1926_rid_0x0a.golden_hw_state failed with error -2
i915 0000:00:02.0: MDEV: Registered
Console: switching to colour dummy device 80x25
i915 0000:00:02.0: MDEV: Unregistering
BUG: kernel NULL pointer dereference, address: 00000000000000a0
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP PTI
CPU: 2 PID: 2486 Comm: gfx-unbind.sh Tainted: G I 6.1.0-rc8+ #15
Hardware name: Dell Inc. XPS 13 9350/0JXC1H, BIOS 1.13.0 02/10/2020
RIP: 0010:down_write+0x1f/0x90
Code: 1d ff ff 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 53 48 89 fb e8 62 c0 ff ff bf 01 00 00 00 e8 28 5e 31 ff 31 c0 ba 01 00 00 00 <f0> 48 0f b1 13 75 33 65 48 8b 04 25 c0 bd 01 00 48 89 43 08 bf 01
RSP: 0018:ffff9eb3036ffcc8 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 00000000000000a0 RCX: ffffff8100000000
RDX: 0000000000000001 RSI: 0000000000000064 RDI: ffffffffa48787a8
RBP: ffff9eb3036ffd30 R08: ffffeb1fc45a0608 R09: ffffeb1fc45a05c0
R10: 0000000000000002 R11: 0000000000000000 R12: 0000000000000000
R13: ffff91acc33fa328 R14: ffff91acc033f080 R15: ffff91acced533e0
FS: 00007f6947bba740(0000) GS:ffff91ae36d00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000000000a0 CR3: 00000001133a2002 CR4: 00000000003706e0
Call Trace:
<TASK>
simple_recursive_removal+0x9f/0x2a0
? start_creating.part.0+0x120/0x120
? _raw_spin_lock+0x13/0x40
debugfs_remove+0x40/0x60
intel_gvt_debugfs_clean+0x15/0x30 [kvmgt]
intel_gvt_clean_device+0x49/0xe0 [kvmgt]
intel_gvt_driver_remove+0x2f/0xb0
i915_driver_remove+0xa4/0xf0
i915_pci_remove+0x1a/0x30
pci_device_remove+0x33/0xa0
device_release_driver_internal+0x1b2/0x230
unbind_store+0xe0/0x110
kernfs_fop_write_iter+0x11b/0x1f0
vfs_write+0x203/0x3d0
ksys_write+0x63/0xe0
do_syscall_64+0x37/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f6947cb5190
Code: 40 00 48 8b 15 71 9c 0d 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 80 3d 51 24 0e 00 00 74 17 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 58 c3 0f 1f 80 00 00 00 00 48 83 ec 28 48 89
RSP: 002b:00007ffcbac45a28 EFLAGS: 00000202 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007f6947cb5190
RDX: 000000000000000d RSI: 0000555e35c866a0 RDI: 0000000000000001
RBP: 0000555e35c866a0 R08: 0000000000000002 R09: 0000555e358cb97c
R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000001
R13: 000000000000000d R14: 0000000000000000 R15: 0000555e358cb8e0
</TASK>
Modules linked in: kvmgt
CR2: 00000000000000a0
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qedi: Fix use after free bug in qedi_remove()
In qedi_probe() we call __qedi_probe() which initializes
&qedi->recovery_work with qedi_recovery_handler() and
&qedi->board_disable_work with qedi_board_disable_work().
When qedi_schedule_recovery_handler() is called, schedule_delayed_work()
will finally start the work.
In qedi_remove(), which is called to remove the driver, the following
sequence may be observed:
Fix this by finishing the work before cleanup in qedi_remove().
CPU0 CPU1
|qedi_recovery_handler
qedi_remove |
__qedi_remove |
iscsi_host_free |
scsi_host_put |
//free shost |
|iscsi_host_for_each_session
|//use qedi->shost
Cancel recovery_work and board_disable_work in __qedi_remove(). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Prevent lpfc_debugfs_lockstat_write() buffer overflow
A static code analysis tool flagged the possibility of buffer overflow when
using copy_from_user() for a debugfs entry.
Currently, it is possible that copy_from_user() copies more bytes than what
would fit in the mybuf char array. Add a min() restriction check between
sizeof(mybuf) - 1 and nbytes passed from the userspace buffer to protect
against buffer overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
media: mtk-jpeg: Fix use after free bug due to uncanceled work
In mtk_jpeg_probe, &jpeg->job_timeout_work is bound with
mtk_jpeg_job_timeout_work. Then mtk_jpeg_dec_device_run
and mtk_jpeg_enc_device_run may be called to start the
work.
If we remove the module which will call mtk_jpeg_remove
to make cleanup, there may be a unfinished work. The
possible sequence is as follows, which will cause a
typical UAF bug.
Fix it by canceling the work before cleanup in the mtk_jpeg_remove
CPU0 CPU1
|mtk_jpeg_job_timeout_work
mtk_jpeg_remove |
v4l2_m2m_release |
kfree(m2m_dev); |
|
| v4l2_m2m_get_curr_priv
| m2m_dev->curr_ctx //use |
| In the Linux kernel, the following vulnerability has been resolved:
media: i2c: ov5648: Free V4L2 fwnode data on unbind
The V4L2 fwnode data structure doesn't get freed on unbind, which leads to
a memleak. |
| In the Linux kernel, the following vulnerability has been resolved:
can: isotp: check CAN address family in isotp_bind()
Add missing check to block non-AF_CAN binds.
Syzbot created some code which matched the right sockaddr struct size
but used AF_XDP (0x2C) instead of AF_CAN (0x1D) in the address family
field:
bind$xdp(r2, &(0x7f0000000540)={0x2c, 0x0, r4, 0x0, r2}, 0x10)
^^^^
This has no funtional impact but the userspace should be notified about
the wrong address family field content. |