| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: fix debug actions order
The order of actions taken for debug was implemented incorrectly.
Now we implemented the dump split and do the FW reset only in the
middle of the dump (rather than the FW killing itself on error.)
As a result, some of the actions taken when applying the config
will now crash the device, so we need to fix the order. |
| In the Linux kernel, the following vulnerability has been resolved:
media: cx231xx: set device_caps for 417
The video_device for the MPEG encoder did not set device_caps.
Add this, otherwise the video device can't be registered (you get a
WARN_ON instead).
Not seen before since currently 417 support is disabled, but I found
this while experimenting with it. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: sunxi-ng: h616: Reparent GPU clock during frequency changes
The H616 manual does not state that the GPU PLL supports
dynamic frequency configuration, so we must take extra care when changing
the frequency. Currently any attempt to do device DVFS on the GPU lead
to panfrost various ooops, and GPU hangs.
The manual describes the algorithm for changing the PLL
frequency, which the CPU PLL notifier code already support, so we reuse
that to reparent the GPU clock to GPU1 clock during frequency
changes. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: mctrl_gpio: split disable_ms into sync and no_sync APIs
The following splat has been observed on a SAMA5D27 platform using
atmel_serial:
BUG: sleeping function called from invalid context at kernel/irq/manage.c:738
in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 27, name: kworker/u5:0
preempt_count: 1, expected: 0
INFO: lockdep is turned off.
irq event stamp: 0
hardirqs last enabled at (0): [<00000000>] 0x0
hardirqs last disabled at (0): [<c01588f0>] copy_process+0x1c4c/0x7bec
softirqs last enabled at (0): [<c0158944>] copy_process+0x1ca0/0x7bec
softirqs last disabled at (0): [<00000000>] 0x0
CPU: 0 UID: 0 PID: 27 Comm: kworker/u5:0 Not tainted 6.13.0-rc7+ #74
Hardware name: Atmel SAMA5
Workqueue: hci0 hci_power_on [bluetooth]
Call trace:
unwind_backtrace from show_stack+0x18/0x1c
show_stack from dump_stack_lvl+0x44/0x70
dump_stack_lvl from __might_resched+0x38c/0x598
__might_resched from disable_irq+0x1c/0x48
disable_irq from mctrl_gpio_disable_ms+0x74/0xc0
mctrl_gpio_disable_ms from atmel_disable_ms.part.0+0x80/0x1f4
atmel_disable_ms.part.0 from atmel_set_termios+0x764/0x11e8
atmel_set_termios from uart_change_line_settings+0x15c/0x994
uart_change_line_settings from uart_set_termios+0x2b0/0x668
uart_set_termios from tty_set_termios+0x600/0x8ec
tty_set_termios from ttyport_set_flow_control+0x188/0x1e0
ttyport_set_flow_control from wilc_setup+0xd0/0x524 [hci_wilc]
wilc_setup [hci_wilc] from hci_dev_open_sync+0x330/0x203c [bluetooth]
hci_dev_open_sync [bluetooth] from hci_dev_do_open+0x40/0xb0 [bluetooth]
hci_dev_do_open [bluetooth] from hci_power_on+0x12c/0x664 [bluetooth]
hci_power_on [bluetooth] from process_one_work+0x998/0x1a38
process_one_work from worker_thread+0x6e0/0xfb4
worker_thread from kthread+0x3d4/0x484
kthread from ret_from_fork+0x14/0x28
This warning is emitted when trying to toggle, at the highest level,
some flow control (with serdev_device_set_flow_control) in a device
driver. At the lowest level, the atmel_serial driver is using
serial_mctrl_gpio lib to enable/disable the corresponding IRQs
accordingly. The warning emitted by CONFIG_DEBUG_ATOMIC_SLEEP is due to
disable_irq (called in mctrl_gpio_disable_ms) being possibly called in
some atomic context (some tty drivers perform modem lines configuration
in regions protected by port lock).
Split mctrl_gpio_disable_ms into two differents APIs, a non-blocking one
and a blocking one. Replace mctrl_gpio_disable_ms calls with the
relevant version depending on whether the call is protected by some port
lock. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Avoid WARN_ON when configuring MQPRIO with HTB offload enabled
When attempting to enable MQPRIO while HTB offload is already
configured, the driver currently returns `-EINVAL` and triggers a
`WARN_ON`, leading to an unnecessary call trace.
Update the code to handle this case more gracefully by returning
`-EOPNOTSUPP` instead, while also providing a helpful user message. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: correct the order of prelim_ref arguments in btrfs__prelim_ref
btrfs_prelim_ref() calls the old and new reference variables in the
incorrect order. This causes a NULL pointer dereference because oldref
is passed as NULL to trace_btrfs_prelim_ref_insert().
Note, trace_btrfs_prelim_ref_insert() is being called with newref as
oldref (and oldref as NULL) on purpose in order to print out
the values of newref.
To reproduce:
echo 1 > /sys/kernel/debug/tracing/events/btrfs/btrfs_prelim_ref_insert/enable
Perform some writeback operations.
Backtrace:
BUG: kernel NULL pointer dereference, address: 0000000000000018
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 115949067 P4D 115949067 PUD 11594a067 PMD 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 1 UID: 0 PID: 1188 Comm: fsstress Not tainted 6.15.0-rc2-tester+ #47 PREEMPT(voluntary) 7ca2cef72d5e9c600f0c7718adb6462de8149622
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-2-gc13ff2cd-prebuilt.qemu.org 04/01/2014
RIP: 0010:trace_event_raw_event_btrfs__prelim_ref+0x72/0x130
Code: e8 43 81 9f ff 48 85 c0 74 78 4d 85 e4 0f 84 8f 00 00 00 49 8b 94 24 c0 06 00 00 48 8b 0a 48 89 48 08 48 8b 52 08 48 89 50 10 <49> 8b 55 18 48 89 50 18 49 8b 55 20 48 89 50 20 41 0f b6 55 28 88
RSP: 0018:ffffce44820077a0 EFLAGS: 00010286
RAX: ffff8c6b403f9014 RBX: ffff8c6b55825730 RCX: 304994edf9cf506b
RDX: d8b11eb7f0fdb699 RSI: ffff8c6b403f9010 RDI: ffff8c6b403f9010
RBP: 0000000000000001 R08: 0000000000000001 R09: 0000000000000010
R10: 00000000ffffffff R11: 0000000000000000 R12: ffff8c6b4e8fb000
R13: 0000000000000000 R14: ffffce44820077a8 R15: ffff8c6b4abd1540
FS: 00007f4dc6813740(0000) GS:ffff8c6c1d378000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000018 CR3: 000000010eb42000 CR4: 0000000000750ef0
PKRU: 55555554
Call Trace:
<TASK>
prelim_ref_insert+0x1c1/0x270
find_parent_nodes+0x12a6/0x1ee0
? __entry_text_end+0x101f06/0x101f09
? srso_alias_return_thunk+0x5/0xfbef5
? srso_alias_return_thunk+0x5/0xfbef5
? srso_alias_return_thunk+0x5/0xfbef5
? srso_alias_return_thunk+0x5/0xfbef5
btrfs_is_data_extent_shared+0x167/0x640
? fiemap_process_hole+0xd0/0x2c0
extent_fiemap+0xa5c/0xbc0
? __entry_text_end+0x101f05/0x101f09
btrfs_fiemap+0x7e/0xd0
do_vfs_ioctl+0x425/0x9d0
__x64_sys_ioctl+0x75/0xc0 |
| In the Linux kernel, the following vulnerability has been resolved:
parisc: Fix double SIGFPE crash
Camm noticed that on parisc a SIGFPE exception will crash an application with
a second SIGFPE in the signal handler. Dave analyzed it, and it happens
because glibc uses a double-word floating-point store to atomically update
function descriptors. As a result of lazy binding, we hit a floating-point
store in fpe_func almost immediately.
When the T bit is set, an assist exception trap occurs when when the
co-processor encounters *any* floating-point instruction except for a double
store of register %fr0. The latter cancels all pending traps. Let's fix this
by clearing the Trap (T) bit in the FP status register before returning to the
signal handler in userspace.
The issue can be reproduced with this test program:
root@parisc:~# cat fpe.c
static void fpe_func(int sig, siginfo_t *i, void *v) {
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGFPE);
sigprocmask(SIG_UNBLOCK, &set, NULL);
printf("GOT signal %d with si_code %ld\n", sig, i->si_code);
}
int main() {
struct sigaction action = {
.sa_sigaction = fpe_func,
.sa_flags = SA_RESTART|SA_SIGINFO };
sigaction(SIGFPE, &action, 0);
feenableexcept(FE_OVERFLOW);
return printf("%lf\n",1.7976931348623158E308*1.7976931348623158E308);
}
root@parisc:~# gcc fpe.c -lm
root@parisc:~# ./a.out
Floating point exception
root@parisc:~# strace -f ./a.out
execve("./a.out", ["./a.out"], 0xf9ac7034 /* 20 vars */) = 0
getrlimit(RLIMIT_STACK, {rlim_cur=8192*1024, rlim_max=RLIM_INFINITY}) = 0
...
rt_sigaction(SIGFPE, {sa_handler=0x1110a, sa_mask=[], sa_flags=SA_RESTART|SA_SIGINFO}, NULL, 8) = 0
--- SIGFPE {si_signo=SIGFPE, si_code=FPE_FLTOVF, si_addr=0x1078f} ---
--- SIGFPE {si_signo=SIGFPE, si_code=FPE_FLTOVF, si_addr=0xf8f21237} ---
+++ killed by SIGFPE +++
Floating point exception |
| In the Linux kernel, the following vulnerability has been resolved:
qibfs: fix _another_ leak
failure to allocate inode => leaked dentry...
this one had been there since the initial merge; to be fair,
if we are that far OOM, the odds of failing at that particular
allocation are low... |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: Avoid race in open_cached_dir with lease breaks
A pre-existing valid cfid returned from find_or_create_cached_dir might
race with a lease break, meaning open_cached_dir doesn't consider it
valid, and thinks it's newly-constructed. This leaks a dentry reference
if the allocation occurs before the queued lease break work runs.
Avoid the race by extending holding the cfid_list_lock across
find_or_create_cached_dir and when the result is checked. |
| In the Linux kernel, the following vulnerability has been resolved:
sch_htb: make htb_qlen_notify() idempotent
htb_qlen_notify() always deactivates the HTB class and in fact could
trigger a warning if it is already deactivated. Therefore, it is not
idempotent and not friendly to its callers, like fq_codel_dequeue().
Let's make it idempotent to ease qdisc_tree_reduce_backlog() callers'
life. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/sclp: Add check for get_zeroed_page()
Add check for the return value of get_zeroed_page() in
sclp_console_init() to prevent null pointer dereference.
Furthermore, to solve the memory leak caused by the loop
allocation, add a free helper to do the free job. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: xhci: Fix isochronous Ring Underrun/Overrun event handling
The TRB pointer of these events points at enqueue at the time of error
occurrence on xHCI 1.1+ HCs or it's NULL on older ones. By the time we
are handling the event, a new TD may be queued at this ring position.
I can trigger this race by rising interrupt moderation to increase IRQ
handling delay. Similar delay may occur naturally due to system load.
If this ever happens after a Missed Service Error, missed TDs will be
skipped and the new TD processed as if it matched the event. It could
be given back prematurely, risking data loss or buffer UAF by the xHC.
Don't complete TDs on xrun events and don't warn if queued TDs don't
match the event's TRB pointer, which can be NULL or a link/no-op TRB.
Don't warn if there are no queued TDs at all.
Now that it's safe, also handle xrun events if the skip flag is clear.
This ensures completion of any TD stuck in 'error mid TD' state right
before the xrun event, which could happen if a driver submits a finite
number of URBs to a buggy HC and then an error occurs on the last TD. |
| In the Linux kernel, the following vulnerability has been resolved:
um: work around sched_yield not yielding in time-travel mode
sched_yield by a userspace may not actually cause scheduling in
time-travel mode as no time has passed. In the case seen it appears to
be a badly implemented userspace spinlock in ASAN. Unfortunately, with
time-travel it causes an extreme slowdown or even deadlock depending on
the kernel configuration (CONFIG_UML_MAX_USERSPACE_ITERATIONS).
Work around it by accounting time to the process whenever it executes a
sched_yield syscall. |
| In the Linux kernel, the following vulnerability has been resolved:
9p/net: fix improper handling of bogus negative read/write replies
In p9_client_write() and p9_client_read_once(), if the server
incorrectly replies with success but a negative write/read count then we
would consider written (negative) <= rsize (positive) because both
variables were signed.
Make variables unsigned to avoid this problem.
The reproducer linked below now fails with the following error instead
of a null pointer deref:
9pnet: bogus RWRITE count (4294967295 > 3) |
| In the Linux kernel, the following vulnerability has been resolved:
iommu: Clear iommu-dma ops on cleanup
If iommu_device_register() encounters an error, it can end up tearing
down already-configured groups and default domains, however this
currently still leaves devices hooked up to iommu-dma (and even
historically the behaviour in this area was at best inconsistent across
architectures/drivers...) Although in the case that an IOMMU is present
whose driver has failed to probe, users cannot necessarily expect DMA to
work anyway, it's still arguable that we should do our best to put
things back as if the IOMMU driver was never there at all, and certainly
the potential for crashing in iommu-dma itself is undesirable. Make sure
we clean up the dev->dma_iommu flag along with everything else. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: pidff: Fix null pointer dereference in pidff_find_fields
This function triggered a null pointer dereference if used to search for
a report that isn't implemented on the device. This happened both for
optional and required reports alike.
The same logic was applied to pidff_find_special_field and although
pidff_init_fields should return an error earlier if one of the required
reports is missing, future modifications could change this logic and
resurface this possible null pointer dereference again.
LKML bug report:
https://lore.kernel.org/all/CAL-gK7f5=R0nrrQdPtaZZr1fd-cdAMbDMuZ_NLA8vM0SX+nGSw@mail.gmail.com |
| In the Linux kernel, the following vulnerability has been resolved:
fs/jfs: Prevent integer overflow in AG size calculation
The JFS filesystem calculates allocation group (AG) size using 1 <<
l2agsize in dbExtendFS(). When l2agsize exceeds 31 (possible with >2TB
aggregates on 32-bit systems), this 32-bit shift operation causes undefined
behavior and improper AG sizing.
On 32-bit architectures:
- Left-shifting 1 by 32+ bits results in 0 due to integer overflow
- This creates invalid AG sizes (0 or garbage values) in
sbi->bmap->db_agsize
- Subsequent block allocations would reference invalid AG structures
- Could lead to:
- Filesystem corruption during extend operations
- Kernel crashes due to invalid memory accesses
- Security vulnerabilities via malformed on-disk structures
Fix by casting to s64 before shifting:
bmp->db_agsize = (s64)1 << l2agsize;
This ensures 64-bit arithmetic even on 32-bit architectures. The cast
matches the data type of db_agsize (s64) and follows similar patterns in
JFS block calculation code.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: st: Fix array overflow in st_setup()
Change the array size to follow parms size instead of a fixed value. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: harden block_group::bg_list against list_del() races
As far as I can tell, these calls of list_del_init() on bg_list cannot
run concurrently with btrfs_mark_bg_unused() or btrfs_mark_bg_to_reclaim(),
as they are in transaction error paths and situations where the block
group is readonly.
However, if there is any chance at all of racing with mark_bg_unused(),
or a different future user of bg_list, better to be safe than sorry.
Otherwise we risk the following interleaving (bg_list refcount in parens)
T1 (some random op) T2 (btrfs_mark_bg_unused)
!list_empty(&bg->bg_list); (1)
list_del_init(&bg->bg_list); (1)
list_move_tail (1)
btrfs_put_block_group (0)
btrfs_delete_unused_bgs
bg = list_first_entry
list_del_init(&bg->bg_list);
btrfs_put_block_group(bg); (-1)
Ultimately, this results in a broken ref count that hits zero one deref
early and the real final deref underflows the refcount, resulting in a WARNING. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: handle amdgpu_cgs_create_device() errors in amd_powerplay_create()
Add error handling to propagate amdgpu_cgs_create_device() failures
to the caller. When amdgpu_cgs_create_device() fails, release hwmgr
and return -ENOMEM to prevent null pointer dereference.
[v1]->[v2]: Change error code from -EINVAL to -ENOMEM. Free hwmgr. |