Search Results (15833 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-38293 3 Debian, Linux, Qualcomm 3 Debian Linux, Linux Kernel, Qca6698aq 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: fix node corruption in ar->arvifs list In current WLAN recovery code flow, ath11k_core_halt() only reinitializes the "arvifs" list head. This will cause the list node immediately following the list head to become an invalid list node. Because the prev of that node still points to the list head "arvifs", but the next of the list head "arvifs" no longer points to that list node. When a WLAN recovery occurs during the execution of a vif removal, and it happens before the spin_lock_bh(&ar->data_lock) in ath11k_mac_op_remove_interface(), list_del() will detect the previously mentioned situation, thereby triggering a kernel panic. The fix is to remove and reinitialize all vif list nodes from the list head "arvifs" during WLAN halt. The reinitialization is to make the list nodes valid, ensuring that the list_del() in ath11k_mac_op_remove_interface() can execute normally. Call trace: __list_del_entry_valid_or_report+0xb8/0xd0 ath11k_mac_op_remove_interface+0xb0/0x27c [ath11k] drv_remove_interface+0x48/0x194 [mac80211] ieee80211_do_stop+0x6e0/0x844 [mac80211] ieee80211_stop+0x44/0x17c [mac80211] __dev_close_many+0xac/0x150 __dev_change_flags+0x194/0x234 dev_change_flags+0x24/0x6c devinet_ioctl+0x3a0/0x670 inet_ioctl+0x200/0x248 sock_do_ioctl+0x60/0x118 sock_ioctl+0x274/0x35c __arm64_sys_ioctl+0xac/0xf0 invoke_syscall+0x48/0x114 ... Tested-on: QCA6698AQ hw2.1 PCI WLAN.HSP.1.1-04591-QCAHSPSWPL_V1_V2_SILICONZ_IOE-1
CVE-2025-38180 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-18 7.8 High
In the Linux kernel, the following vulnerability has been resolved: net: atm: fix /proc/net/atm/lec handling /proc/net/atm/lec must ensure safety against dev_lec[] changes. It appears it had dev_put() calls without prior dev_hold(), leading to imbalance and UAF.
CVE-2025-68325 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: net/sched: sch_cake: Fix incorrect qlen reduction in cake_drop In cake_drop(), qdisc_tree_reduce_backlog() is used to update the qlen and backlog of the qdisc hierarchy. Its caller, cake_enqueue(), assumes that the parent qdisc will enqueue the current packet. However, this assumption breaks when cake_enqueue() returns NET_XMIT_CN: the parent qdisc stops enqueuing current packet, leaving the tree qlen/backlog accounting inconsistent. This mismatch can lead to a NULL dereference (e.g., when the parent Qdisc is qfq_qdisc). This patch computes the qlen/backlog delta in a more robust way by observing the difference before and after the series of cake_drop() calls, and then compensates the qdisc tree accounting if cake_enqueue() returns NET_XMIT_CN. To ensure correct compensation when ACK thinning is enabled, a new variable is introduced to keep qlen unchanged.
CVE-2025-68324 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: imm: Fix use-after-free bug caused by unfinished delayed work The delayed work item 'imm_tq' is initialized in imm_attach() and scheduled via imm_queuecommand() for processing SCSI commands. When the IMM parallel port SCSI host adapter is detached through imm_detach(), the imm_struct device instance is deallocated. However, the delayed work might still be pending or executing when imm_detach() is called, leading to use-after-free bugs when the work function imm_interrupt() accesses the already freed imm_struct memory. The race condition can occur as follows: CPU 0(detach thread) | CPU 1 | imm_queuecommand() | imm_queuecommand_lck() imm_detach() | schedule_delayed_work() kfree(dev) //FREE | imm_interrupt() | dev = container_of(...) //USE dev-> //USE Add disable_delayed_work_sync() in imm_detach() to guarantee proper cancellation of the delayed work item before imm_struct is deallocated.
CVE-2025-68323 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: usb: typec: ucsi: fix use-after-free caused by uec->work The delayed work uec->work is scheduled in gaokun_ucsi_probe() but never properly canceled in gaokun_ucsi_remove(). This creates use-after-free scenarios where the ucsi and gaokun_ucsi structure are freed after ucsi_destroy() completes execution, while the gaokun_ucsi_register_worker() might be either currently executing or still pending in the work queue. The already-freed gaokun_ucsi or ucsi structure may then be accessed. Furthermore, the race window is 3 seconds, which is sufficiently long to make this bug easily reproducible. The following is the trace captured by KASAN: ================================================================== BUG: KASAN: slab-use-after-free in __run_timers+0x5ec/0x630 Write of size 8 at addr ffff00000ec28cc8 by task swapper/0/0 ... Call trace: show_stack+0x18/0x24 (C) dump_stack_lvl+0x78/0x90 print_report+0x114/0x580 kasan_report+0xa4/0xf0 __asan_report_store8_noabort+0x20/0x2c __run_timers+0x5ec/0x630 run_timer_softirq+0xe8/0x1cc handle_softirqs+0x294/0x720 __do_softirq+0x14/0x20 ____do_softirq+0x10/0x1c call_on_irq_stack+0x30/0x48 do_softirq_own_stack+0x1c/0x28 __irq_exit_rcu+0x27c/0x364 irq_exit_rcu+0x10/0x1c el1_interrupt+0x40/0x60 el1h_64_irq_handler+0x18/0x24 el1h_64_irq+0x6c/0x70 arch_local_irq_enable+0x4/0x8 (P) do_idle+0x334/0x458 cpu_startup_entry+0x60/0x70 rest_init+0x158/0x174 start_kernel+0x2f8/0x394 __primary_switched+0x8c/0x94 Allocated by task 72 on cpu 0 at 27.510341s: kasan_save_stack+0x2c/0x54 kasan_save_track+0x24/0x5c kasan_save_alloc_info+0x40/0x54 __kasan_kmalloc+0xa0/0xb8 __kmalloc_node_track_caller_noprof+0x1c0/0x588 devm_kmalloc+0x7c/0x1c8 gaokun_ucsi_probe+0xa0/0x840 auxiliary_bus_probe+0x94/0xf8 really_probe+0x17c/0x5b8 __driver_probe_device+0x158/0x2c4 driver_probe_device+0x10c/0x264 __device_attach_driver+0x168/0x2d0 bus_for_each_drv+0x100/0x188 __device_attach+0x174/0x368 device_initial_probe+0x14/0x20 bus_probe_device+0x120/0x150 device_add+0xb3c/0x10fc __auxiliary_device_add+0x88/0x130 ... Freed by task 73 on cpu 1 at 28.910627s: kasan_save_stack+0x2c/0x54 kasan_save_track+0x24/0x5c __kasan_save_free_info+0x4c/0x74 __kasan_slab_free+0x60/0x8c kfree+0xd4/0x410 devres_release_all+0x140/0x1f0 device_unbind_cleanup+0x20/0x190 device_release_driver_internal+0x344/0x460 device_release_driver+0x18/0x24 bus_remove_device+0x198/0x274 device_del+0x310/0xa84 ... The buggy address belongs to the object at ffff00000ec28c00 which belongs to the cache kmalloc-512 of size 512 The buggy address is located 200 bytes inside of freed 512-byte region The buggy address belongs to the physical page: page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x4ec28 head: order:2 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0 flags: 0x3fffe0000000040(head|node=0|zone=0|lastcpupid=0x1ffff) page_type: f5(slab) raw: 03fffe0000000040 ffff000008801c80 dead000000000122 0000000000000000 raw: 0000000000000000 0000000080100010 00000000f5000000 0000000000000000 head: 03fffe0000000040 ffff000008801c80 dead000000000122 0000000000000000 head: 0000000000000000 0000000080100010 00000000f5000000 0000000000000000 head: 03fffe0000000002 fffffdffc03b0a01 00000000ffffffff 00000000ffffffff head: ffffffffffffffff 0000000000000000 00000000ffffffff 0000000000000004 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff00000ec28b80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff00000ec28c00: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff00000ec28c80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff00000ec28d00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff00000ec28d80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================ ---truncated---
CVE-2025-40348 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: slab: Avoid race on slab->obj_exts in alloc_slab_obj_exts If two competing threads enter alloc_slab_obj_exts() and one of them fails to allocate the object extension vector, it might override the valid slab->obj_exts allocated by the other thread with OBJEXTS_ALLOC_FAIL. This will cause the thread that lost this race and expects a valid pointer to dereference a NULL pointer later on. Update slab->obj_exts atomically using cmpxchg() to avoid slab->obj_exts overrides by racing threads. Thanks for Vlastimil and Suren's help with debugging.
CVE-2025-68200 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Add bpf_prog_run_data_pointers() syzbot found that cls_bpf_classify() is able to change tc_skb_cb(skb)->drop_reason triggering a warning in sk_skb_reason_drop(). WARNING: CPU: 0 PID: 5965 at net/core/skbuff.c:1192 __sk_skb_reason_drop net/core/skbuff.c:1189 [inline] WARNING: CPU: 0 PID: 5965 at net/core/skbuff.c:1192 sk_skb_reason_drop+0x76/0x170 net/core/skbuff.c:1214 struct tc_skb_cb has been added in commit ec624fe740b4 ("net/sched: Extend qdisc control block with tc control block"), which added a wrong interaction with db58ba459202 ("bpf: wire in data and data_end for cls_act_bpf"). drop_reason was added later. Add bpf_prog_run_data_pointers() helper to save/restore the net_sched storage colliding with BPF data_meta/data_end.
CVE-2025-68202 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: sched_ext: Fix unsafe locking in the scx_dump_state() For built with CONFIG_PREEMPT_RT=y kernels, the dump_lock will be converted sleepable spinlock and not disable-irq, so the following scenarios occur: inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage. irq_work/0/27 [HC0[0]:SC0[0]:HE1:SE1] takes: (&rq->__lock){?...}-{2:2}, at: raw_spin_rq_lock_nested+0x2b/0x40 {IN-HARDIRQ-W} state was registered at: lock_acquire+0x1e1/0x510 _raw_spin_lock_nested+0x42/0x80 raw_spin_rq_lock_nested+0x2b/0x40 sched_tick+0xae/0x7b0 update_process_times+0x14c/0x1b0 tick_periodic+0x62/0x1f0 tick_handle_periodic+0x48/0xf0 timer_interrupt+0x55/0x80 __handle_irq_event_percpu+0x20a/0x5c0 handle_irq_event_percpu+0x18/0xc0 handle_irq_event+0xb5/0x150 handle_level_irq+0x220/0x460 __common_interrupt+0xa2/0x1e0 common_interrupt+0xb0/0xd0 asm_common_interrupt+0x2b/0x40 _raw_spin_unlock_irqrestore+0x45/0x80 __setup_irq+0xc34/0x1a30 request_threaded_irq+0x214/0x2f0 hpet_time_init+0x3e/0x60 x86_late_time_init+0x5b/0xb0 start_kernel+0x308/0x410 x86_64_start_reservations+0x1c/0x30 x86_64_start_kernel+0x96/0xa0 common_startup_64+0x13e/0x148 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&rq->__lock); <Interrupt> lock(&rq->__lock); *** DEADLOCK *** stack backtrace: CPU: 0 UID: 0 PID: 27 Comm: irq_work/0 Call Trace: <TASK> dump_stack_lvl+0x8c/0xd0 dump_stack+0x14/0x20 print_usage_bug+0x42e/0x690 mark_lock.part.44+0x867/0xa70 ? __pfx_mark_lock.part.44+0x10/0x10 ? string_nocheck+0x19c/0x310 ? number+0x739/0x9f0 ? __pfx_string_nocheck+0x10/0x10 ? __pfx_check_pointer+0x10/0x10 ? kvm_sched_clock_read+0x15/0x30 ? sched_clock_noinstr+0xd/0x20 ? local_clock_noinstr+0x1c/0xe0 __lock_acquire+0xc4b/0x62b0 ? __pfx_format_decode+0x10/0x10 ? __pfx_string+0x10/0x10 ? __pfx___lock_acquire+0x10/0x10 ? __pfx_vsnprintf+0x10/0x10 lock_acquire+0x1e1/0x510 ? raw_spin_rq_lock_nested+0x2b/0x40 ? __pfx_lock_acquire+0x10/0x10 ? dump_line+0x12e/0x270 ? raw_spin_rq_lock_nested+0x20/0x40 _raw_spin_lock_nested+0x42/0x80 ? raw_spin_rq_lock_nested+0x2b/0x40 raw_spin_rq_lock_nested+0x2b/0x40 scx_dump_state+0x3b3/0x1270 ? finish_task_switch+0x27e/0x840 scx_ops_error_irq_workfn+0x67/0x80 irq_work_single+0x113/0x260 irq_work_run_list.part.3+0x44/0x70 run_irq_workd+0x6b/0x90 ? __pfx_run_irq_workd+0x10/0x10 smpboot_thread_fn+0x529/0x870 ? __pfx_smpboot_thread_fn+0x10/0x10 kthread+0x305/0x3f0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x40/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> This commit therefore use rq_lock_irqsave/irqrestore() to replace rq_lock/unlock() in the scx_dump_state().
CVE-2025-68181 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/radeon: Remove calls to drm_put_dev() Since the allocation of the drivers main structure was changed to devm_drm_dev_alloc() drm_put_dev()'ing to trigger it to be free'd should be done by devres. However, drm_put_dev() is still in the probe error and device remove paths. When the driver fails to probe warnings like the following are shown because devres is trying to drm_put_dev() after the driver already did it. [ 5.642230] radeon 0000:01:05.0: probe with driver radeon failed with error -22 [ 5.649605] ------------[ cut here ]------------ [ 5.649607] refcount_t: underflow; use-after-free. [ 5.649620] WARNING: CPU: 0 PID: 357 at lib/refcount.c:28 refcount_warn_saturate+0xbe/0x110 (cherry picked from commit 3eb8c0b4c091da0a623ade0d3ee7aa4a93df1ea4)
CVE-2025-68201 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: remove two invalid BUG_ON()s Those can be triggered trivially by userspace.
CVE-2025-40361 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs: ext4: change GFP_KERNEL to GFP_NOFS to avoid deadlock The parent function ext4_xattr_inode_lookup_create already uses GFP_NOFS for memory alloction, so the function ext4_xattr_inode_cache_find should use same gfp_flag.
CVE-2025-68199 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: codetag: debug: handle existing CODETAG_EMPTY in mark_objexts_empty for slabobj_ext When alloc_slab_obj_exts() fails and then later succeeds in allocating a slab extension vector, it calls handle_failed_objexts_alloc() to mark all objects in the vector as empty. As a result all objects in this slab (slabA) will have their extensions set to CODETAG_EMPTY. Later on if this slabA is used to allocate a slabobj_ext vector for another slab (slabB), we end up with the slabB->obj_exts pointing to a slabobj_ext vector that itself has a non-NULL slabobj_ext equal to CODETAG_EMPTY. When slabB gets freed, free_slab_obj_exts() is called to free slabB->obj_exts vector. free_slab_obj_exts() calls mark_objexts_empty(slabB->obj_exts) which will generate a warning because it expects slabobj_ext vectors to have a NULL obj_ext, not CODETAG_EMPTY. Modify mark_objexts_empty() to skip the warning and setting the obj_ext value if it's already set to CODETAG_EMPTY. To quickly detect this WARN, I modified the code from WARN_ON(slab_exts[offs].ref.ct) to BUG_ON(slab_exts[offs].ref.ct == 1); We then obtained this message: [21630.898561] ------------[ cut here ]------------ [21630.898596] kernel BUG at mm/slub.c:2050! [21630.898611] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP [21630.900372] Modules linked in: squashfs isofs vfio_iommu_type1 vhost_vsock vfio vhost_net vmw_vsock_virtio_transport_common vhost tap vhost_iotlb iommufd vsock binfmt_misc nfsv3 nfs_acl nfs lockd grace netfs tls rds dns_resolver tun brd overlay ntfs3 exfat btrfs blake2b_generic xor xor_neon raid6_pq loop sctp ip6_udp_tunnel udp_tunnel nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nf_tables rfkill ip_set sunrpc vfat fat joydev sg sch_fq_codel nfnetlink virtio_gpu sr_mod cdrom drm_client_lib virtio_dma_buf drm_shmem_helper drm_kms_helper drm ghash_ce backlight virtio_net virtio_blk virtio_scsi net_failover virtio_console failover virtio_mmio dm_mirror dm_region_hash dm_log dm_multipath dm_mod fuse i2c_dev virtio_pci virtio_pci_legacy_dev virtio_pci_modern_dev virtio virtio_ring autofs4 aes_neon_bs aes_ce_blk [last unloaded: hwpoison_inject] [21630.909177] CPU: 3 UID: 0 PID: 3787 Comm: kylin-process-m Kdump: loaded Tainted: G        W           6.18.0-rc1+ #74 PREEMPT(voluntary) [21630.910495] Tainted: [W]=WARN [21630.910867] Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 [21630.911625] pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [21630.912392] pc : __free_slab+0x228/0x250 [21630.912868] lr : __free_slab+0x18c/0x250[21630.913334] sp : ffff8000a02f73e0 [21630.913830] x29: ffff8000a02f73e0 x28: fffffdffc43fc800 x27: ffff0000c0011c40 [21630.914677] x26: ffff0000c000cac0 x25: ffff00010fe5e5f0 x24: ffff000102199b40 [21630.915469] x23: 0000000000000003 x22: 0000000000000003 x21: ffff0000c0011c40 [21630.916259] x20: fffffdffc4086600 x19: fffffdffc43fc800 x18: 0000000000000000 [21630.917048] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 [21630.917837] x14: 0000000000000000 x13: 0000000000000000 x12: ffff70001405ee66 [21630.918640] x11: 1ffff0001405ee65 x10: ffff70001405ee65 x9 : ffff800080a295dc [21630.919442] x8 : ffff8000a02f7330 x7 : 0000000000000000 x6 : 0000000000003000 [21630.920232] x5 : 0000000024924925 x4 : 0000000000000001 x3 : 0000000000000007 [21630.921021] x2 : 0000000000001b40 x1 : 000000000000001f x0 : 0000000000000001 [21630.921810] Call trace: [21630.922130]  __free_slab+0x228/0x250 (P) [21630.922669]  free_slab+0x38/0x118 [21630.923079]  free_to_partial_list+0x1d4/0x340 [21630.923591]  __slab_free+0x24c/0x348 [21630.924024]  ___cache_free+0xf0/0x110 [21630.924468]  qlist_free_all+0x78/0x130 [21630.924922]  kasan_quarantine_reduce+0x11 ---truncated---
CVE-2025-68204 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: pmdomain: arm: scmi: Fix genpd leak on provider registration failure If of_genpd_add_provider_onecell() fails during probe, the previously created generic power domains are not removed, leading to a memory leak and potential kernel crash later in genpd_debug_add(). Add proper error handling to unwind the initialized domains before returning from probe to ensure all resources are correctly released on failure. Example crash trace observed without this fix: | Unable to handle kernel paging request at virtual address fffffffffffffc70 | CPU: 1 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.18.0-rc1 #405 PREEMPT | Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno Development Platform | pstate: 00000005 (nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : genpd_debug_add+0x2c/0x160 | lr : genpd_debug_init+0x74/0x98 | Call trace: | genpd_debug_add+0x2c/0x160 (P) | genpd_debug_init+0x74/0x98 | do_one_initcall+0xd0/0x2d8 | do_initcall_level+0xa0/0x140 | do_initcalls+0x60/0xa8 | do_basic_setup+0x28/0x40 | kernel_init_freeable+0xe8/0x170 | kernel_init+0x2c/0x140 | ret_from_fork+0x10/0x20
CVE-2025-68171 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/fpu: Ensure XFD state on signal delivery Sean reported [1] the following splat when running KVM tests: WARNING: CPU: 232 PID: 15391 at xfd_validate_state+0x65/0x70 Call Trace: <TASK> fpu__clear_user_states+0x9c/0x100 arch_do_signal_or_restart+0x142/0x210 exit_to_user_mode_loop+0x55/0x100 do_syscall_64+0x205/0x2c0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 Chao further identified [2] a reproducible scenario involving signal delivery: a non-AMX task is preempted by an AMX-enabled task which modifies the XFD MSR. When the non-AMX task resumes and reloads XSTATE with init values, a warning is triggered due to a mismatch between fpstate::xfd and the CPU's current XFD state. fpu__clear_user_states() does not currently re-synchronize the XFD state after such preemption. Invoke xfd_update_state() which detects and corrects the mismatch if there is a dynamic feature. This also benefits the sigreturn path, as fpu__restore_sig() may call fpu__clear_user_states() when the sigframe is inaccessible. [ dhansen: minor changelog munging ]
CVE-2025-68195 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: x86/CPU/AMD: Add missing terminator for zen5_rdseed_microcode Running x86_match_min_microcode_rev() on a Zen5 CPU trips up KASAN for an out of bounds access.
CVE-2025-68176 1 Linux 1 Linux Kernel 2025-12-18 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI: cadence: Check for the existence of cdns_pcie::ops before using it cdns_pcie::ops might not be populated by all the Cadence glue drivers. This is going to be true for the upcoming Sophgo platform which doesn't set the ops. Hence, add a check to prevent NULL pointer dereference. [mani: reworded subject and description]
CVE-2025-68196 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Cache streams targeting link when performing LT automation [WHY] Last LT automation update can cause crash by referencing current_state and calling into dc_update_planes_and_stream which may clobber current_state. [HOW] Cache relevant stream pointers and iterate through them instead of relying on the current_state.
CVE-2025-68188 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: tcp: use dst_dev_rcu() in tcp_fastopen_active_disable_ofo_check() Use RCU to avoid a pair of atomic operations and a potential UAF on dst_dev()->flags.
CVE-2025-68192 1 Linux 1 Linux Kernel 2025-12-18 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: usb: qmi_wwan: initialize MAC header offset in qmimux_rx_fixup Raw IP packets have no MAC header, leaving skb->mac_header uninitialized. This can trigger kernel panics on ARM64 when xfrm or other subsystems access the offset due to strict alignment checks. Initialize the MAC header to prevent such crashes. This can trigger kernel panics on ARM when running IPsec over the qmimux0 interface. Example trace: Internal error: Oops: 000000009600004f [#1] SMP CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.12.34-gbe78e49cb433 #1 Hardware name: LS1028A RDB Board (DT) pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : xfrm_input+0xde8/0x1318 lr : xfrm_input+0x61c/0x1318 sp : ffff800080003b20 Call trace: xfrm_input+0xde8/0x1318 xfrm6_rcv+0x38/0x44 xfrm6_esp_rcv+0x48/0xa8 ip6_protocol_deliver_rcu+0x94/0x4b0 ip6_input_finish+0x44/0x70 ip6_input+0x44/0xc0 ipv6_rcv+0x6c/0x114 __netif_receive_skb_one_core+0x5c/0x8c __netif_receive_skb+0x18/0x60 process_backlog+0x78/0x17c __napi_poll+0x38/0x180 net_rx_action+0x168/0x2f0
CVE-2025-68203 1 Linux 1 Linux Kernel 2025-12-18 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix lock warning in amdgpu_userq_fence_driver_process Fix a potential deadlock caused by inconsistent spinlock usage between interrupt and process contexts in the userq fence driver. The issue occurs when amdgpu_userq_fence_driver_process() is called from both: - Interrupt context: gfx_v11_0_eop_irq() -> amdgpu_userq_fence_driver_process() - Process context: amdgpu_eviction_fence_suspend_worker() -> amdgpu_userq_fence_driver_force_completion() -> amdgpu_userq_fence_driver_process() In interrupt context, the spinlock was acquired without disabling interrupts, leaving it in {IN-HARDIRQ-W} state. When the same lock is acquired in process context, the kernel detects inconsistent locking since the process context acquisition would enable interrupts while holding a lock previously acquired in interrupt context. Kernel log shows: [ 4039.310790] inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage. [ 4039.310804] kworker/7:2/409 [HC0[0]:SC0[0]:HE1:SE1] takes: [ 4039.310818] ffff9284e1bed000 (&fence_drv->fence_list_lock){?...}-{3:3}, [ 4039.310993] {IN-HARDIRQ-W} state was registered at: [ 4039.311004] lock_acquire+0xc6/0x300 [ 4039.311018] _raw_spin_lock+0x39/0x80 [ 4039.311031] amdgpu_userq_fence_driver_process.part.0+0x30/0x180 [amdgpu] [ 4039.311146] amdgpu_userq_fence_driver_process+0x17/0x30 [amdgpu] [ 4039.311257] gfx_v11_0_eop_irq+0x132/0x170 [amdgpu] Fix by using spin_lock_irqsave()/spin_unlock_irqrestore() to properly manage interrupt state regardless of calling context. (cherry picked from commit ded3ad780cf97a04927773c4600823b84f7f3cc2)