| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix crash on synthetic stacktrace field usage
When creating a synthetic event based on an existing synthetic event that
had a stacktrace field and the new synthetic event used that field a
kernel crash occurred:
~# cd /sys/kernel/tracing
~# echo 's:stack unsigned long stack[];' > dynamic_events
~# echo 'hist:keys=prev_pid:s0=common_stacktrace if prev_state & 3' >> events/sched/sched_switch/trigger
~# echo 'hist:keys=next_pid:s1=$s0:onmatch(sched.sched_switch).trace(stack,$s1)' >> events/sched/sched_switch/trigger
The above creates a synthetic event that takes a stacktrace when a task
schedules out in a non-running state and passes that stacktrace to the
sched_switch event when that task schedules back in. It triggers the
"stack" synthetic event that has a stacktrace as its field (called "stack").
~# echo 's:syscall_stack s64 id; unsigned long stack[];' >> dynamic_events
~# echo 'hist:keys=common_pid:s2=stack' >> events/synthetic/stack/trigger
~# echo 'hist:keys=common_pid:s3=$s2,i0=id:onmatch(synthetic.stack).trace(syscall_stack,$i0,$s3)' >> events/raw_syscalls/sys_exit/trigger
The above makes another synthetic event called "syscall_stack" that
attaches the first synthetic event (stack) to the sys_exit trace event and
records the stacktrace from the stack event with the id of the system call
that is exiting.
When enabling this event (or using it in a historgram):
~# echo 1 > events/synthetic/syscall_stack/enable
Produces a kernel crash!
BUG: unable to handle page fault for address: 0000000000400010
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP PTI
CPU: 6 UID: 0 PID: 1257 Comm: bash Not tainted 6.16.3+deb14-amd64 #1 PREEMPT(lazy) Debian 6.16.3-1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.17.0-debian-1.17.0-1 04/01/2014
RIP: 0010:trace_event_raw_event_synth+0x90/0x380
Code: c5 00 00 00 00 85 d2 0f 84 e1 00 00 00 31 db eb 34 0f 1f 00 66 66 2e 0f 1f 84 00 00 00 00 00 66 66 2e 0f 1f 84 00 00 00 00 00 <49> 8b 04 24 48 83 c3 01 8d 0c c5 08 00 00 00 01 cd 41 3b 5d 40 0f
RSP: 0018:ffffd2670388f958 EFLAGS: 00010202
RAX: ffff8ba1065cc100 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000001 RSI: fffff266ffda7b90 RDI: ffffd2670388f9b0
RBP: 0000000000000010 R08: ffff8ba104e76000 R09: ffffd2670388fa50
R10: ffff8ba102dd42e0 R11: ffffffff9a908970 R12: 0000000000400010
R13: ffff8ba10a246400 R14: ffff8ba10a710220 R15: fffff266ffda7b90
FS: 00007fa3bc63f740(0000) GS:ffff8ba2e0f48000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000400010 CR3: 0000000107f9e003 CR4: 0000000000172ef0
Call Trace:
<TASK>
? __tracing_map_insert+0x208/0x3a0
action_trace+0x67/0x70
event_hist_trigger+0x633/0x6d0
event_triggers_call+0x82/0x130
trace_event_buffer_commit+0x19d/0x250
trace_event_raw_event_sys_exit+0x62/0xb0
syscall_exit_work+0x9d/0x140
do_syscall_64+0x20a/0x2f0
? trace_event_raw_event_sched_switch+0x12b/0x170
? save_fpregs_to_fpstate+0x3e/0x90
? _raw_spin_unlock+0xe/0x30
? finish_task_switch.isra.0+0x97/0x2c0
? __rseq_handle_notify_resume+0xad/0x4c0
? __schedule+0x4b8/0xd00
? restore_fpregs_from_fpstate+0x3c/0x90
? switch_fpu_return+0x5b/0xe0
? do_syscall_64+0x1ef/0x2f0
? do_fault+0x2e9/0x540
? __handle_mm_fault+0x7d1/0xf70
? count_memcg_events+0x167/0x1d0
? handle_mm_fault+0x1d7/0x2e0
? do_user_addr_fault+0x2c3/0x7f0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The reason is that the stacktrace field is not labeled as such, and is
treated as a normal field and not as a dynamic event that it is.
In trace_event_raw_event_synth() the event is field is still treated as a
dynamic array, but the retrieval of the data is considered a normal field,
and the reference is just the meta data:
// Meta data is retrieved instead of a dynamic array
---truncated--- |
| BartVPN 1.2.2 contains an unquoted service path vulnerability in the BartVPNService that allows local attackers to potentially execute arbitrary code with elevated system privileges. Attackers can exploit the unquoted binary path by placing malicious executables in specific file system locations to hijack the service's execution context. |
| Improper Check for Unusual or Exceptional Conditions vulnerability in Drupal Group invite allows Forceful Browsing.This issue affects Group invite: from 0.0.0 before 2.3.9, from 3.0.0 before 3.0.4, from 4.0.0 before 4.0.4. |
| Privilege Defined With Unsafe Actions vulnerability in Drupal Role Delegation allows Privilege Escalation.This issue affects Role Delegation: from 1.3.0 before 1.5.0. |
| melange allows users to build apk packages using declarative pipelines. From version 0.14.0 to before 0.40.3, an attacker who can influence a melange configuration file (e.g., through pull request-driven CI or build-as-a-service scenarios) could read arbitrary files from the host system. The LicensingInfos function in pkg/config/config.go reads license files specified in copyright[].license-path without validating that paths remain within the workspace directory, allowing path traversal via ../ sequences. The contents of the traversed file are embedded into the generated SBOM as license text, enabling exfiltration of sensitive data through build artifacts. This issue has been patched in version 0.40.3. |
| OpenSlides is a free, web based presentation and assembly system for managing and projecting agenda, motions and elections of an assembly. Prior to version 4.2.29, OpenSlides supports local logins with username and password or an optionally configurable single sign on with SAML via an external IDP. For users synced to OpenSlides via an external IDP, there is an incorrect access control regarding the local login of these users. Users can successfully login using the local login form and the OpenSlides username of a SAML user and a trivial password. This password is valid for all SAML users. This issue has been patched in version 4.2.29. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix drm panic null pointer when driver not support atomic
When driver not support atomic, fb using plane->fb rather than
plane->state->fb.
(cherry picked from commit 2f2a72de673513247cd6fae14e53f6c40c5841ef) |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Sanitize payload size to prevent member overflow
In qla27xx_copy_fpin_pkt() and qla27xx_copy_multiple_pkt(), the frame_size
reported by firmware is used to calculate the copy length into
item->iocb. However, the iocb member is defined as a fixed-size 64-byte
array within struct purex_item.
If the reported frame_size exceeds 64 bytes, subsequent memcpy calls will
overflow the iocb member boundary. While extra memory might be allocated,
this cross-member write is unsafe and triggers warnings under
CONFIG_FORTIFY_SOURCE.
Fix this by capping total_bytes to the size of the iocb member (64 bytes)
before allocation and copying. This ensures all copies remain within the
bounds of the destination structure member. |
| NanoMQ MQTT Broker (NanoMQ) is an all-around Edge Messaging Platform. In version 0.24.6, NanoMQ has a protocol parsing / forwarding inconsistency when handling shared subscriptions ($share/). A malformed SUBSCRIBE topic such as $share/ab (missing the second /) is not strictly validated during the subscription stage, so the invalid Topic Filter is stored into the subscription table. Later, when any PUBLISH matches this subscription, the broker send path (nmq_pipe_send_start_v4/v5) performs a second $share/ parsing using strchr() and increments the returned pointer without NULL checks. If the second strchr() returns NULL, sub_topic++ turns the pointer into an invalid address (e.g. 0x1). This invalid pointer is then passed into topic_filtern(), which triggers strlen() and crashes with SIGSEGV. The crash is stable and remotely triggerable. This issue has been patched in version 0.24.7. |
| OpenSTAManager is an open source management software for technical assistance and invoicing. In version 2.9.8 and prior, there is a SQL Injection vulnerability in the Stampe Module. At time of publication, no known patch exists. |
| IBM Cloud Pak System displays sensitive information in user messages that could aid in further attacks against the system. |
| A vulnerability in the text rendering subsystem of Cisco TelePresence Collaboration Endpoint (CE) Software and Cisco RoomOS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device.
This vulnerability is due to insufficient validation of input received by an affected device. An attacker could exploit this vulnerability by getting the affected device to render crafted text, for example, a crafted meeting invitation. As indicated in the CVSS score, no user interaction is required, such as accepting the meeting invitation. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. |
| A vulnerability in the web-based management interface of Cisco Evolved Programmable Network Manager (EPNM) and Cisco Prime Infrastructure could allow an unauthenticated, remote attacker to redirect a user to a malicious web page.
This vulnerability is due to improper input validation of the parameters in the HTTP request. An attacker could exploit this vulnerability by intercepting and modifying an HTTP request from a user. A successful exploit could allow the attacker to redirect the user to a malicious web page. |
| n8n is an open source workflow automation platform. From version 0.187.0 to before 1.120.3, a command injection vulnerability was identified in n8n’s community package installation functionality. The issue allowed authenticated users with administrative permissions to execute arbitrary system commands on the n8n host under specific conditions. This issue has been patched in version 1.120.3. |
| In the Linux kernel, the following vulnerability has been resolved:
pNFS: Fix a deadlock when returning a delegation during open()
Ben Coddington reports seeing a hang in the following stack trace:
0 [ffffd0b50e1774e0] __schedule at ffffffff9ca05415
1 [ffffd0b50e177548] schedule at ffffffff9ca05717
2 [ffffd0b50e177558] bit_wait at ffffffff9ca061e1
3 [ffffd0b50e177568] __wait_on_bit at ffffffff9ca05cfb
4 [ffffd0b50e1775c8] out_of_line_wait_on_bit at ffffffff9ca05ea5
5 [ffffd0b50e177618] pnfs_roc at ffffffffc154207b [nfsv4]
6 [ffffd0b50e1776b8] _nfs4_proc_delegreturn at ffffffffc1506586 [nfsv4]
7 [ffffd0b50e177788] nfs4_proc_delegreturn at ffffffffc1507480 [nfsv4]
8 [ffffd0b50e1777f8] nfs_do_return_delegation at ffffffffc1523e41 [nfsv4]
9 [ffffd0b50e177838] nfs_inode_set_delegation at ffffffffc1524a75 [nfsv4]
10 [ffffd0b50e177888] nfs4_process_delegation at ffffffffc14f41dd [nfsv4]
11 [ffffd0b50e1778a0] _nfs4_opendata_to_nfs4_state at ffffffffc1503edf [nfsv4]
12 [ffffd0b50e1778c0] _nfs4_open_and_get_state at ffffffffc1504e56 [nfsv4]
13 [ffffd0b50e177978] _nfs4_do_open at ffffffffc15051b8 [nfsv4]
14 [ffffd0b50e1779f8] nfs4_do_open at ffffffffc150559c [nfsv4]
15 [ffffd0b50e177a80] nfs4_atomic_open at ffffffffc15057fb [nfsv4]
16 [ffffd0b50e177ad0] nfs4_file_open at ffffffffc15219be [nfsv4]
17 [ffffd0b50e177b78] do_dentry_open at ffffffff9c09e6ea
18 [ffffd0b50e177ba8] vfs_open at ffffffff9c0a082e
19 [ffffd0b50e177bd0] dentry_open at ffffffff9c0a0935
The issue is that the delegreturn is being asked to wait for a layout
return that cannot complete because a state recovery was initiated. The
state recovery cannot complete until the open() finishes processing the
delegations it was given.
The solution is to propagate the existing flags that indicate a
non-blocking call to the function pnfs_roc(), so that it knows not to
wait in this situation. |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Do not over-allocate ftrace memory
The pg_remaining calculation in ftrace_process_locs() assumes that
ENTRIES_PER_PAGE multiplied by 2^order equals the actual capacity of the
allocated page group. However, ENTRIES_PER_PAGE is PAGE_SIZE / ENTRY_SIZE
(integer division). When PAGE_SIZE is not a multiple of ENTRY_SIZE (e.g.
4096 / 24 = 170 with remainder 16), high-order allocations (like 256 pages)
have significantly more capacity than 256 * 170. This leads to pg_remaining
being underestimated, which in turn makes skip (derived from skipped -
pg_remaining) larger than expected, causing the WARN(skip != remaining)
to trigger.
Extra allocated pages for ftrace: 2 with 654 skipped
WARNING: CPU: 0 PID: 0 at kernel/trace/ftrace.c:7295 ftrace_process_locs+0x5bf/0x5e0
A similar problem in ftrace_allocate_records() can result in allocating
too many pages. This can trigger the second warning in
ftrace_process_locs().
Extra allocated pages for ftrace
WARNING: CPU: 0 PID: 0 at kernel/trace/ftrace.c:7276 ftrace_process_locs+0x548/0x580
Use the actual capacity of a page group to determine the number of pages
to allocate. Have ftrace_allocate_pages() return the number of allocated
pages to avoid having to calculate it. Use the actual page group capacity
when validating the number of unused pages due to skipped entries.
Drop the definition of ENTRIES_PER_PAGE since it is no longer used. |
| In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix a deadlock involving nfs_release_folio()
Wang Zhaolong reports a deadlock involving NFSv4.1 state recovery
waiting on kthreadd, which is attempting to reclaim memory by calling
nfs_release_folio(). The latter cannot make progress due to state
recovery being needed.
It seems that the only safe thing to do here is to kick off a writeback
of the folio, without waiting for completion, or else kicking off an
asynchronous commit. |
| In the Linux kernel, the following vulnerability has been resolved:
vsock/virtio: Coalesce only linear skb
vsock/virtio common tries to coalesce buffers in rx queue: if a linear skb
(with a spare tail room) is followed by a small skb (length limited by
GOOD_COPY_LEN = 128), an attempt is made to join them.
Since the introduction of MSG_ZEROCOPY support, assumption that a small skb
will always be linear is incorrect. In the zerocopy case, data is lost and
the linear skb is appended with uninitialized kernel memory.
Of all 3 supported virtio-based transports, only loopback-transport is
affected. G2H virtio-transport rx queue operates on explicitly linear skbs;
see virtio_vsock_alloc_linear_skb() in virtio_vsock_rx_fill(). H2G
vhost-transport may allocate non-linear skbs, but only for sizes that are
not considered for coalescence; see PAGE_ALLOC_COSTLY_ORDER in
virtio_vsock_alloc_skb().
Ensure only linear skbs are coalesced. Note that skb_tailroom(last_skb) > 0
guarantees last_skb is linear. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: hp-bioscfg: Fix kernel panic in GET_INSTANCE_ID macro
The GET_INSTANCE_ID macro that caused a kernel panic when accessing sysfs
attributes:
1. Off-by-one error: The loop condition used '<=' instead of '<',
causing access beyond array bounds. Since array indices are 0-based
and go from 0 to instances_count-1, the loop should use '<'.
2. Missing NULL check: The code dereferenced attr_name_kobj->name
without checking if attr_name_kobj was NULL, causing a null pointer
dereference in min_length_show() and other attribute show functions.
The panic occurred when fwupd tried to read BIOS configuration attributes:
Oops: general protection fault [#1] SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
RIP: 0010:min_length_show+0xcf/0x1d0 [hp_bioscfg]
Add a NULL check for attr_name_kobj before dereferencing and corrects
the loop boundary to match the pattern used elsewhere in the driver. |
| Improper Neutralization of Input During Web Page Generation ("Cross-site Scripting") vulnerability in Drupal AT Internet Piano Analytics allows Cross-Site Scripting (XSS).This issue affects AT Internet Piano Analytics: from 0.0.0 before 1.0.1, from 2.0.0 before 2.3.1. |